Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 9 de 9
Filtrar
Más filtros

Bases de datos
Tipo del documento
País de afiliación
Intervalo de año de publicación
1.
Nature ; 629(8010): 92-97, 2024 May.
Artículo en Inglés | MEDLINE | ID: mdl-38503346

RESUMEN

Ammonia is crucial as a fertilizer and in the chemical industry and is considered to be a carbon-free fuel1. Ammonia electrosynthesis from nitrogen under ambient conditions offers an attractive alternative to the Haber-Bosch process2,3, and lithium-mediated nitrogen reduction represents a promising approach to continuous-flow ammonia electrosynthesis, coupling nitrogen reduction with hydrogen oxidation4. However, tetrahydrofuran, which is commonly used as a solvent, impedes long-term ammonia production owing to polymerization and volatility problems. Here we show that a chain-ether-based electrolyte enables long-term continuous ammonia synthesis. We find that a chain-ether-based solvent exhibits non-polymerization properties and a high boiling point (162 °C) and forms a compact solid-electrolyte interphase layer on the gas diffusion electrode, facilitating ammonia release in the gas phase and ensuring electrolyte stability. We demonstrate 300 h of continuous operation in a flow electrolyser with a 25 cm2 electrode at 1 bar pressure and room temperature, and achieve a current-to-ammonia efficiency of 64 ± 1% with a gas-phase ammonia content of approximately 98%. Our results highlight the crucial role of the solvent in long-term continuous ammonia synthesis.

2.
Nat Mater ; 23(1): 101-107, 2024 Jan.
Artículo en Inglés | MEDLINE | ID: mdl-37884670

RESUMEN

Ammonia (NH3) is a key commodity chemical for the agricultural, textile and pharmaceutical industries, but its production via the Haber-Bosch process is carbon-intensive and centralized. Alternatively, an electrochemical method could enable decentralized, ambient NH3 production that can be paired with renewable energy. The first verified electrochemical method for NH3 synthesis was a process mediated by lithium (Li) in organic electrolytes. So far, however, elements other than Li remain unexplored in this process for potential benefits in efficiency, reaction rates, device design, abundance and stability. In our demonstration of a Li-free system, we found that calcium can mediate the reduction of nitrogen for NH3 synthesis. We verified the calcium-mediated process using a rigorous protocol and achieved an NH3 Faradaic efficiency of 40 ± 2% using calcium tetrakis(hexafluoroisopropyloxy)borate (Ca[B(hfip)4]2) as the electrolyte. Our results offer the possibility of using abundant materials for the electrochemical production of NH3, a critical chemical precursor and promising energy vector.

3.
Nat Commun ; 15(1): 2417, 2024 Mar 18.
Artículo en Inglés | MEDLINE | ID: mdl-38499554

RESUMEN

Ammonia is a crucial component in the production of fertilizers and various nitrogen-based compounds. Now, the lithium-mediated nitrogen reduction reaction (Li-NRR) has emerged as a promising approach for ammonia synthesis at ambient conditions. The proton shuttle plays a critical role in the proton transfer process during Li-NRR. However, the structure-activity relationship and design principles for effective proton shuttles have not yet been established in practical Li-NRR systems. Here, we propose a general procedure for verifying a true proton shuttle and established design principles for effective proton shuttles. We systematically evaluate several classes of proton shuttles in a continuous-flow reactor with hydrogen oxidation at the anode. Among the tested proton shuttles, phenol exhibits the highest Faradaic efficiency of 72 ± 3% towards ammonia, surpassing that of ethanol, which has been commonly used so far. Experimental investigations including operando isotope-labelled mass spectrometry proved the proton-shuttling capability of phenol. Further mass transport modeling sheds light on the mechanism.

4.
ChemSusChem ; 16(22): e202301011, 2023 Nov 22.
Artículo en Inglés | MEDLINE | ID: mdl-37681646

RESUMEN

The lithium-mediated nitrogen reduction reaction (Li-NRR) is a promising method for decentralized ammonia synthesis using renewable energy. An organic electrolyte is utilized to combat the competing hydrogen evolution reaction, and lithium is plated to activate the inert N2 molecule. Ethanol is commonly used as a proton shuttle to provide hydrogen to the activated nitrogen. In this study, we investigate the role of ethanol as a proton shuttle in an electrolyte containing tetrahydrofuran and 0.2 M lithium perchlorate. Particularly designed electrochemical experiments show that ethanol is necessary for a good solid-electrolyte interphase but not for the synthesis of ammonia. In addition, electrochemical quartz crystal microbalance (EQCM) demonstrates that the SEI formation at the onset of lithium plating is of specific importance. Chemical batch synthesis of ammonia combined with real-time mass spectrometry confirms that protons can be shuttled from the anode to the cathode by other species even without ethanol. Moreover, it raises questions regarding the electrochemical nature of Li-NRR. Finally, we discuss electrolyte stability and electrochemical electrode potentials, highlighting the role of ethanol on electrolyte degradation.

5.
Science ; 379(6633): 707-712, 2023 Feb 17.
Artículo en Inglés | MEDLINE | ID: mdl-36795804

RESUMEN

Ammonia is a critical component in fertilizers, pharmaceuticals, and fine chemicals and is an ideal, carbon-free fuel. Recently, lithium-mediated nitrogen reduction has proven to be a promising route for electrochemical ammonia synthesis at ambient conditions. In this work, we report a continuous-flow electrolyzer equipped with 25-square centimeter-effective area gas diffusion electrodes wherein nitrogen reduction is coupled with hydrogen oxidation. We show that the classical catalyst platinum is not stable for hydrogen oxidation in the organic electrolyte, but a platinum-gold alloy lowers the anode potential and avoids the decremental decomposition of the organic electrolyte. At optimal operating conditions, we achieve, at 1 bar, a faradaic efficiency for ammonia production of up to 61 ± 1% and an energy efficiency of 13 ± 1% at a current density of -6 milliamperes per square centimeter.

6.
J Phys Chem Lett ; 13(20): 4605-4611, 2022 May 26.
Artículo en Inglés | MEDLINE | ID: mdl-35588323

RESUMEN

Although oxygen added to nonaqueous lithium-mediated electrochemical ammonia synthesis (LiMEAS) enhances Faradaic efficiency, its effect on chemical stability and byproducts requires understanding. Therefore, standardized high-resolution gas chromatography-mass spectrometry and nuclear magnetic resonance were employed. Different volatile degradation products have been qualitatively analyzed and quantified in tetrahydrofuran electrolyte by adding some oxygen to LiMEAS. Electrodeposited lithium and reduction/oxidation of the solvent on the electrodes produced organic byproducts to different extents, depending on the oxygen concentration, and resulted in less decomposition products after LiMEAS with oxygen. The main organic component in solid-electrolyte interphase was polytetrahydrofuran, which disappeared by adding an excess of oxygen (3 mol %) to LiMEAS. The total number of byproducts detected was 14, 9, and 8 with oxygen concentrations of 0, 0.8, and 3 mol %, respectively. The Faradaic efficiency and chemical stability of the LiMEAS have been greatly improved with addition of optimal 0.8 mol % oxygen at 20 bar total pressure.


Asunto(s)
Amoníaco , Litio , Electrodos , Electrólitos , Litio/química , Oxígeno/química
7.
Joule ; 6(9): 2083-2101, 2022 Sep 21.
Artículo en Inglés | MEDLINE | ID: mdl-36188748

RESUMEN

Ammonia is a large-scale commodity essential to fertilizer production, but the Haber-Bosch process leads to massive emissions of carbon dioxide. Electrochemical ammonia synthesis is an attractive alternative pathway, but the process is still limited by low ammonia production rate and faradaic efficiency. Herein, guided by our theoretical model, we present a highly efficient lithium-mediated process enabled by using different lithium salts, leading to the formation of a uniform solid-electrolyte interphase (SEI) layer on a porous copper electrode. The uniform lithium-fluoride-enriched SEI layer provides an ammonia production rate of 2.5 ± 0.1 µmol s-1 cmgeo -2 at a current density of -1 A cmgeo -2 with 71% ± 3% faradaic efficiency under 20 bar nitrogen. Experimental X-ray analysis reveals that the lithium tetrafluoroborate electrolyte induces the formation of a compact and uniform SEI layer, which facilitates homogeneous lithium plating, suppresses the undesired hydrogen evolution as well as electrolyte decomposition, and enhances the nitrogen reduction.

8.
RSC Adv ; 11(50): 31487-31498, 2021 Sep 21.
Artículo en Inglés | MEDLINE | ID: mdl-35496884

RESUMEN

Lithium-mediated electrochemical ammonia synthesis (LiMEAS) in non-aqueous media is a promising technique for efficient and green ammonia synthesis. Compared to the widely used Haber-Bosch process, the method reduces CO2 emissions to zero due to the application of green hydrogen. However, the non-aqueous medium encounters the alkali metal lithium and organic components at high negative potentials of electrolysis, which leads to formation of byproducts. To assess the environmental risk of this synthesis method, standardized analytical methods towards understanding of the degradation level and consequences are needed. Here we report on the implementation of an approach to analyze the liquid electrolytes after electrochemical ammonia synthesis via high-resolution gas chromatography-mass spectrometry (GCMS). To characterize the molecular species formed after electrolysis, electron ionization high-resolution mass spectrometry (EI-MS) was applied. The fragmentation patterns enabled the elucidation of the mechanisms of byproduct formation. Several organic electrolytes were analyzed and compared both qualitatively and quantitatively to ascertain molecular composition and degradation products. It was found that the organic solvent in contact with metallic electrodeposited lithium induces solvent degradation, and the extent of this decomposition to different organic molecules depends on the organic solvent used. Our results show GCMS as a suitable technique for monitoring non-aqueous electrochemical ammonia synthesis in different organic electrolytes.

9.
Science ; 374(6575): 1593-1597, 2021 Dec 24.
Artículo en Inglés | MEDLINE | ID: mdl-34941415

RESUMEN

Owing to the worrying increase in carbon dioxide concentrations in the atmosphere, there is a need to electrify fossil-fuel­powered chemical processes such as the Haber-Bosch ammonia synthesis. Lithium-mediated electrochemical nitrogen reduction has shown preliminary promise but still lacks sufficient faradaic efficiency and ammonia formation rate to be industrially relevant. Here, we show that oxygen, previously believed to hinder the reaction, actually greatly improves the faradaic efficiency and stability of the lithium-mediated nitrogen reduction when added to the reaction atmosphere in small amounts. With this counterintuitive discovery, we reach record high faradaic efficiencies of up to 78.0 ± 1.3% at 0.6 to 0.8 mole % oxygen in 20 bar of nitrogen. Experimental x-ray analysis and theoretical microkinetic modeling shed light on the underlying mechanism.

SELECCIÓN DE REFERENCIAS
DETALLE DE LA BÚSQUEDA