Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 5 de 5
Filtrar
1.
J Med Genet ; 58(3): 185-195, 2021 03.
Artículo en Inglés | MEDLINE | ID: mdl-32518175

RESUMEN

BACKGROUND: Congenital dyserythropoietic anaemia type I (CDA-I) is a hereditary anaemia caused by biallelic mutations in the widely expressed genes CDAN1 and C15orf41. Little is understood about either protein and it is unclear in which cellular pathways they participate. METHODS: Genetic analysis of a cohort of patients with CDA-I identifies novel pathogenic variants in both known causative genes. We analyse the mutation distribution and the predicted structural positioning of amino acids affected in Codanin-1, the protein encoded by CDAN1. Using western blotting, immunoprecipitation and immunofluorescence, we determine the effect of particular mutations on both proteins and interrogate protein interaction, stability and subcellular localisation. RESULTS: We identify six novel CDAN1 mutations and one novel mutation in C15orf41 and uncover evidence of further genetic heterogeneity in CDA-I. Additionally, population genetics suggests that CDA-I is more common than currently predicted. Mutations are enriched in six clusters in Codanin-1 and tend to affect buried residues. Many missense and in-frame mutations do not destabilise the entire protein. Rather C15orf41 relies on Codanin-1 for stability and both proteins, which are enriched in the nucleolus, interact to form an obligate complex in cells. CONCLUSION: Stability and interaction data suggest that C15orf41 may be the key determinant of CDA-I and offer insight into the mechanism underlying this disease. Both proteins share a common pathway likely to be present in a wide variety of cell types; however, nucleolar enrichment may provide a clue as to the erythroid specific nature of CDA-I. The surprisingly high predicted incidence of CDA-I suggests that better ascertainment would lead to improved patient care.


Asunto(s)
Anemia Diseritropoyética Congénita/genética , Predisposición Genética a la Enfermedad , Glicoproteínas/genética , Proteínas Nucleares/genética , Factores de Transcripción/genética , Anemia Diseritropoyética Congénita/patología , Femenino , Regulación de la Expresión Génica/genética , Pruebas Genéticas , Genética de Población , Humanos , Masculino , Complejos Multiproteicos/genética , Mutación/genética
4.
JIMD Rep ; 57(1): 23-28, 2021 Jan.
Artículo en Inglés | MEDLINE | ID: mdl-33473336

RESUMEN

Acaeruloplasminemia is a rare autosomal recessive condition caused by inactivating mutations of the CP gene encoding caeruloplasmin (ferroxidase). Caeruloplasmin is a copper-containing plasma ferroxidase enzyme with a key role in facilitating cellular iron efflux. We describe a case of a patient with acaeruloplasminemia, confirmed by genetic analysis, treated with combination therapy of monthly fresh-frozen plasma (FFP) or Octaplas and iron chelation over a 3-year period. This 19-year-old male was diagnosed at the age of 14 after developing issues with social interaction at school prompting investigation. Prior to this, he had been well with a normal childhood. He was found to have an iron deficient picture with a paradoxically high ferritin, with low serum copper and undetectable caeruloplasmin. Genetic testing identified a homozygous splicing mutation, c.(1713 + delG);(c.1713 + delG), in intron 9 of the caeruloplasmin gene. Ferriscan showed a high liver iron concentration of 5.3 mg/g dry tissue (0.17-1.8). Brain and cardiac T2-weighted magnetic resonance (MR) imaging did not detect iron deposition of the brain or heart respectively. Treatment with monthly Octaplas infusion was commenced alongside deferasirox (540 mg o.d.) in an attempt to increase caeruloplasmin levels and reduce iron overload, respectively. After 3 years of treatment, there was biochemical improvement with a reduction in ferritin from 1084 (12-250) to 457 µg/L, ALT from 87 (<50) to 34 U/L together with improvement in his microcytic anaemia. No significant adverse events occurred. This case report adds further evidence of treatment efficacy and safety of combined FFP and iron chelation therapy in acaeruloplasminemia.

SELECCIÓN DE REFERENCIAS
DETALLE DE LA BÚSQUEDA