Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 20 de 31
Filtrar
Más filtros

Bases de datos
País/Región como asunto
Tipo del documento
Intervalo de año de publicación
1.
Hepatology ; 76(3): 646-659, 2022 09.
Artículo en Inglés | MEDLINE | ID: mdl-34786702

RESUMEN

BACKGROUND AND AIMS: Patient-derived human-induced pluripotent stem cells (hiPSCs) differentiated into hepatocytes (hiPSC-Heps) have facilitated the study of rare genetic liver diseases. Here, we aimed to establish an in vitro liver disease model of the urea cycle disorder ornithine transcarbamylase deficiency (OTCD) using patient-derived hiPSC-Heps. APPROACH AND RESULTS: Before modeling OTCD, we addressed the question of why hiPSC-Heps generally secrete less urea than adult primary human hepatocytes (PHHs). Because hiPSC-Heps are not completely differentiated and maintain some characteristics of fetal PHHs, we compared gene-expression levels in human fetal and adult liver tissue to identify genes responsible for reduced urea secretion in hiPSC-Heps. We found lack of aquaporin 9 (AQP9) expression in fetal liver tissue as well as in hiPSC-Heps, and showed that forced expression of AQP9 in hiPSC-Heps restores urea secretion and normalizes the response to ammonia challenge by increasing ureagenesis. Furthermore, we proved functional ureagenesis by challenging AQP9-expressing hiPSC-Heps with ammonium chloride labeled with the stable isotope [15 N] (15 NH4 Cl) and by assessing enrichment of [15 N]-labeled urea. Finally, using hiPSC-Heps derived from patients with OTCD, we generated a liver disease model that recapitulates the hepatic manifestation of the human disease. Restoring OTC expression-together with AQP9-was effective in fully correcting OTC activity and normalizing ureagenesis as assessed by 15 NH4 Cl stable-isotope challenge. CONCLUSION: Our results identify a critical role for AQP9 in functional urea metabolism and establish the feasibility of in vitro modeling of OTCD with hiPSC-Heps. By facilitating studies of OTCD genotype/phenotype correlation and drug screens, our model has potential for improving the therapy of OTCD.


Asunto(s)
Acuaporinas/metabolismo , Células Madre Pluripotentes Inducidas , Hepatopatías , Enfermedad por Deficiencia de Ornitina Carbamoiltransferasa , Adulto , Hepatocitos/metabolismo , Humanos , Células Madre Pluripotentes Inducidas/metabolismo , Hepatopatías/metabolismo , Enfermedad por Deficiencia de Ornitina Carbamoiltransferasa/genética , Enfermedad por Deficiencia de Ornitina Carbamoiltransferasa/metabolismo , Enfermedad por Deficiencia de Ornitina Carbamoiltransferasa/terapia , Urea
2.
J Lipid Res ; 63(6): 100223, 2022 06.
Artículo en Inglés | MEDLINE | ID: mdl-35537528

RESUMEN

The cellular energy and biomass demands of cancer drive a complex dynamic between uptake of extracellular FAs and their de novo synthesis. Given that oxidation of de novo synthesized FAs for energy would result in net-energy loss, there is an implication that FAs from these two sources must have distinct metabolic fates; however, hitherto, all FAs have been considered part of a common pool. To probe potential metabolic partitioning of cellular FAs, cancer cells were supplemented with stable isotope-labeled FAs. Structural analysis of the resulting glycerophospholipids revealed that labeled FAs from uptake were largely incorporated to canonical (sn-) positions on the glycerol backbone. Surprisingly, labeled FA uptake also disrupted canonical isomer patterns of the unlabeled lipidome and induced repartitioning of n-3 and n-6 PUFAs into glycerophospholipid classes. These structural changes support the existence of differences in the metabolic fates of FAs derived from uptake or de novo sources and demonstrate unique signaling and remodeling behaviors usually hidden from conventional lipidomics.


Asunto(s)
Ácidos Grasos , Neoplasias , Ácidos Grasos/metabolismo , Glicerofosfolípidos/química , Metabolismo de los Lípidos , Transducción de Señal
3.
J Nat Prod ; 83(8): 2357-2366, 2020 08 28.
Artículo en Inglés | MEDLINE | ID: mdl-32691595

RESUMEN

The spirooxepinisoxazoline alkaloid psammaplysin F (1) was selected as a scaffold for the generation of a unique screening library for both drug discovery and chemical biology research. Large-scale extraction and isolation chemistry was performed on a marine sponge (Hyattella sp.) collected from the Great Barrier Reef in order to acquire >200 mg of the desired bromotyrosine-derived alkaloidal scaffold. Parallel solution-phase semisynthesis was employed to generate a series of psammaplysin-based urea (2-9) and amide analogues (10-11) in low to moderate yields. The chemical structures of all analogues were characterized using NMR and MS data. The absolute configuration of psammaplysin F and all semisynthetic analogues was determined as 6R, 7R by comparison of ECD data with literature values. All compounds (1-11) were evaluated for their effect on cell cycle distribution and changes to cancer metabolism in LNCaP prostate cancer cells using a multiparametric quantitative single-cell imaging approach. These investigations identified that in LNCaP cells psammaplysin F and some urea analogues caused loss of mitochondrial membrane potential, fragmentation of the mitochondrial tubular network, chromosome misalignment, and cell cycle arrest in mitosis.


Asunto(s)
Neoplasias de la Próstata/patología , Análisis de la Célula Individual/métodos , Compuestos de Espiro/síntesis química , Tirosina/análogos & derivados , Animales , Línea Celular Tumoral , Humanos , Masculino , Poríferos/química , Análisis Espectral/métodos , Compuestos de Espiro/aislamiento & purificación , Tirosina/síntesis química , Tirosina/aislamiento & purificación
4.
J Nat Prod ; 81(4): 838-845, 2018 04 27.
Artículo en Inglés | MEDLINE | ID: mdl-29474071

RESUMEN

The naturally occurring pentacyclic diterpenoid gibberellic acid (1) was used in the generation of a drug-like amide library using parallel-solution-phase synthesis. Prior to the synthesis, a virtual library was generated and prioritized based on drug-like physicochemical parameters such as log P, hydrogen bond donor/acceptor counts, and molecular weight. The structures of the synthesized analogues (2-13) were elucidated following analysis of the NMR, MS, UV, and IR data. Compound 12 afforded crystalline material, and its structure was confirmed by X-ray crystallographic analysis. All compounds were evaluated in vitro for cytotoxicity and deregulation of lipid metabolism in LNCaP prostate cancer cells. While no cytotoxic activity was identified at the concentrations tested, synthesized analogues 3, 5, 7, 10, and 11 substantially reduced cellular uptake of free cholesterol in prostate cancer cells, suggesting a novel role of gibberellic acid derivatives in deregulating cholesterol metabolism.


Asunto(s)
Colesterol/metabolismo , Giberelinas/farmacología , Neoplasias de la Próstata/metabolismo , Productos Biológicos/farmacología , Línea Celular Tumoral , Cristalografía por Rayos X , Citotoxinas/farmacología , Humanos , Metabolismo de los Lípidos/efectos de los fármacos , Espectroscopía de Resonancia Magnética/métodos , Masculino
5.
J Pathol ; 236(3): 278-89, 2015 Jul.
Artículo en Inglés | MEDLINE | ID: mdl-25693838

RESUMEN

Glutamine is conditionally essential in cancer cells, being utilized as a carbon and nitrogen source for macromolecule production, as well as for anaplerotic reactions fuelling the tricarboxylic acid (TCA) cycle. In this study, we demonstrated that the glutamine transporter ASCT2 (SLC1A5) is highly expressed in prostate cancer patient samples. Using LNCaP and PC-3 prostate cancer cell lines, we showed that chemical or shRNA-mediated inhibition of ASCT2 function in vitro decreases glutamine uptake, cell cycle progression through E2F transcription factors, mTORC1 pathway activation and cell growth. Chemical inhibition also reduces basal oxygen consumption and fatty acid synthesis, showing that downstream metabolic function is reliant on ASCT2-mediated glutamine uptake. Furthermore, shRNA knockdown of ASCT2 in PC-3 cell xenografts significantly inhibits tumour growth and metastasis in vivo, associated with the down-regulation of E2F cell cycle pathway proteins. In conclusion, ASCT2-mediated glutamine uptake is essential for multiple pathways regulating the cell cycle and cell growth, and is therefore a putative therapeutic target in prostate cancer.


Asunto(s)
Sistema de Transporte de Aminoácidos ASC/genética , Regulación Neoplásica de la Expresión Génica , Glutamina/metabolismo , Neoplasias de la Próstata/genética , Sistema de Transporte de Aminoácidos ASC/antagonistas & inhibidores , Sistema de Transporte de Aminoácidos ASC/metabolismo , Animales , Transporte Biológico , Ciclo Celular , Línea Celular Tumoral , Proliferación Celular , Regulación hacia Abajo , Ácidos Grasos/metabolismo , Técnicas de Silenciamiento del Gen , Xenoinjertos , Humanos , Masculino , Diana Mecanicista del Complejo 1 de la Rapamicina , Ratones , Ratones Desnudos , Antígenos de Histocompatibilidad Menor , Complejos Multiproteicos/genética , Complejos Multiproteicos/metabolismo , Metástasis de la Neoplasia , Oxígeno/metabolismo , Neoplasias de la Próstata/metabolismo , Neoplasias de la Próstata/patología , Neoplasias de la Próstata/prevención & control , ARN Interferente Pequeño , Serina-Treonina Quinasas TOR/genética , Serina-Treonina Quinasas TOR/metabolismo
6.
J Nat Prod ; 79(5): 1445-53, 2016 05 27.
Artículo en Inglés | MEDLINE | ID: mdl-27120798

RESUMEN

Chemical investigations of the CH2Cl2 extract obtained from the leaves of the Australian rainforest tree Maytenus bilocularis afforded three new dihydro-ß-agarofurans, bilocularins A-C (1-3), and six known congeners, namely, celastrine A (4), 1α,6ß,8α-triacetoxy-9α-benzoyloxydihydro-ß-agarofuran (5), 1α,6ß-diacetoxy-9α-benzoyloxy-8α-hydroxydihydro-ß-agarofuran (6), Ejap-10 (11), 1α,6ß-diacetoxy-9ß-benzoyloxydihydro-ß-agarofuran (12), and Ejap-2 (13). The major compound 1 was used in semisynthetic studies to afford four ester derivatives (7-10). The chemical structures of 1-3 were elucidated following analysis of 1D/2D NMR and MS data. The absolute configurations of bilocularins A (1) and B (2) were determined by single-crystal X-ray diffraction analysis. All compounds were evaluated for cytotoxic activity against the human prostate cancer cell line LNCaP; none of the compounds were active. However, several compounds showed similar potency to the drug efflux pump inhibitor verapamil in reversing the drug resistance of the human leukemia CEM/VCR R cell line. In addition, similar to verapamil, compound 5 was found to inhibit leucine uptake in LNCaP cells (IC50 = 15.5 µM), which was more potent than the leucine analogue 2-aminobicyclo[2.2.1]heptane-2-carbocyclic acid. This is the first report of secondary metabolites from Maytenus bilocularis.


Asunto(s)
Maytenus/química , Sesquiterpenos/aislamiento & purificación , Sesquiterpenos/farmacología , Australia , Cristalografía por Rayos X , Humanos , Conformación Molecular , Estructura Molecular , Bosque Lluvioso , Sesquiterpenos/química
7.
J Nat Prod ; 78(12): 2908-16, 2015 Dec 24.
Artículo en Inglés | MEDLINE | ID: mdl-26600001

RESUMEN

In order to identify new anticancer compounds from nature, a prefractionated library derived from Australian endemic plants was generated and screened against the prostate cancer cell line LNCaP using a metabolic assay. Fractions from the seeds, leaves, and wood of Anopterus macleayanus showed cytotoxic activity and were subsequently investigated using a combination of bioassay-guided fractionation and mass-directed isolation. This led to the identification of four new diterpenoid alkaloids, 6α-acetoxyanopterine (1), 4'-hydroxy-6α-acetoxyanopterine (2), 4'-hydroxyanopterine (3), and 11α-benzoylanopterine (4), along with four known compounds, anopterine (5), 7ß-hydroxyanopterine (6), 7ß,4'-dihydroxyanopterine (7), and 7ß-hydroxy-11α-benzoylanopterine (8); all compounds were purified as their trifluoroacetate salt. The chemical structures of 1-8 were elucidated after analysis of 1D/2D NMR and MS data. Compounds 1-8 were evaluated for cytotoxic activity against a panel of human prostate cancer cells (LNCaP, C4-2B, and DuCaP) and nonmalignant cell lines (BPH-1 and WPMY-1), using a live-cell imaging system and a metabolic assay. All compounds showed potent cytotoxicity with IC50 values of <400 nM; compound 1 was the most active natural product from this series, with an IC50 value of 3.1 nM toward the LNCaP cell line. The live-cell imaging assay on 1-8 showed a concentration- and time-dependent effect on the cell morphology and proliferation of LNCaP cells.


Asunto(s)
Antineoplásicos Fitogénicos/aislamiento & purificación , Antineoplásicos Fitogénicos/farmacología , Diterpenos/aislamiento & purificación , Diterpenos/farmacología , Magnoliopsida/química , Antineoplásicos Fitogénicos/química , Australia , Diterpenos/química , Ensayos de Selección de Medicamentos Antitumorales , Humanos , Concentración 50 Inhibidora , Masculino , Estructura Molecular , Hojas de la Planta/química , Neoplasias de la Próstata/tratamiento farmacológico , Bosque Lluvioso , Semillas/química , Madera/química
8.
J Nat Prod ; 78(1): 111-9, 2015 Jan 23.
Artículo en Inglés | MEDLINE | ID: mdl-25579619

RESUMEN

Eight new dihydro-ß-agarofurans, denhaminols A-H (1-8), were isolated from the leaves of the Australian rainforest tree Denhamia celastroides. The chemical structures of 1-8 were elucidated following analysis of 1D/2D NMR and MS data. The absolute configuration of denhaminol A (1) was determined by single-crystal X-ray crystallography. All compounds were evaluated for cytotoxic activity against the human prostate cancer cell line LNCaP, using live-cell imaging and metabolic assays. Denhaminols A (1) and G (7) were also tested for their effects on the lipid content of LNCaP cells. This is the first report of secondary metabolites from D. celastroides.


Asunto(s)
Celastraceae/química , Bosque Lluvioso , Sesquiterpenos/aislamiento & purificación , Antineoplásicos Fitogénicos/química , Australia , Cristalografía por Rayos X , Ensayos de Selección de Medicamentos Antitumorales , Humanos , Masculino , Conformación Molecular , Estructura Molecular , Hojas de la Planta/química , Sesquiterpenos/química , Sesquiterpenos/farmacología
9.
J Nat Prod ; 78(4): 914-8, 2015 Apr 24.
Artículo en Inglés | MEDLINE | ID: mdl-25803573

RESUMEN

The fungal metabolite 3-chloro-4-hydroxyphenylacetic acid (1) was utilized in the generation of a unique drug-like screening library using parallel solution-phase synthesis. A 20-membered amide library (3-22) was generated by first converting 1 to methyl (3-chloro-4-hydroxyphenyl)acetate (2), then reacting this scaffold with a diverse series of primary amines via a solvent-free aminolysis procedure. The structures of the synthetic analogues (3-22) were elucidated by spectroscopic data analysis. The structures of compounds 8, 12, and 22 were confirmed by single X-ray crystallographic analysis. All compounds were evaluated for cytotoxicity against a human prostate cancer cell line (LNCaP) and for antiparasitic activity toward Trypanosoma brucei brucei and Plasmodium falciparum and showed no significant activity at 10 µM. The library was also tested for effects on the lipid content of LNCaP and PC-3 prostate cancer cells, and it was demonstrated that the fluorobenzyl analogues (12-14) significantly reduced cellular phospholipid and neutral lipid levels.


Asunto(s)
Productos Biológicos/síntesis química , Fenilacetatos/química , Antimaláricos/farmacología , Productos Biológicos/química , Técnicas Químicas Combinatorias , Cristalografía por Rayos X , Humanos , Masculino , Conformación Molecular , Estructura Molecular , Resonancia Magnética Nuclear Biomolecular , Fenilacetatos/síntesis química , Plasmodium falciparum/efectos de los fármacos , Relación Estructura-Actividad , Trypanosoma brucei brucei/efectos de los fármacos
10.
Bioorg Med Chem Lett ; 24(15): 3329-32, 2014 Aug 01.
Artículo en Inglés | MEDLINE | ID: mdl-24973030

RESUMEN

Mass-guided fractionation of the MeOH extract from a specimen of the Australian marine sponge Hyrtios sp. resulted in the isolation of two new tryptophan alkaloids, 6-oxofascaplysin (2), and secofascaplysic acid (3), in addition to the known metabolites fascaplysin (1) and reticulatate (4). The structures of all molecules were determined following NMR and MS data analysis. Structural ambiguities in 2 were addressed through comparison of experimental and DFT-generated theoretical NMR spectral values. Compounds 1-4 were evaluated for their cytotoxicity against a prostate cancer cell line (LNCaP) and were shown to display IC50 values ranging from 0.54 to 44.9 µM.


Asunto(s)
Alcaloides/farmacología , Antineoplásicos/farmacología , Poríferos/química , Triptófano/farmacología , Alcaloides/química , Alcaloides/aislamiento & purificación , Animales , Antineoplásicos/química , Antineoplásicos/aislamiento & purificación , Australia , Línea Celular Tumoral , Proliferación Celular/efectos de los fármacos , Relación Dosis-Respuesta a Droga , Ensayos de Selección de Medicamentos Antitumorales , Humanos , Modelos Moleculares , Estructura Molecular , Teoría Cuántica , Relación Estructura-Actividad , Triptófano/química , Triptófano/aislamiento & purificación
11.
Mar Drugs ; 12(10): 5222-39, 2014 Oct 17.
Artículo en Inglés | MEDLINE | ID: mdl-25329705

RESUMEN

Ascidians are marine invertebrates that have been a source of numerous cytotoxic compounds. Of the first six marine-derived drugs that made anticancer clinical trials, three originated from ascidian specimens. In order to identify new anti-neoplastic compounds, an ascidian extract library (143 samples) was generated and screened in MDA-MB-231 breast cancer cells using a real-time cell analyzer (RTCA). This resulted in 143 time-dependent cell response profiles (TCRP), which are read-outs of changes to the growth rate, morphology, and adhesive characteristics of the cell culture. Twenty-one extracts affected the TCRP of MDA-MB-231 cells and were further investigated regarding toxicity and specificity, as well as their effects on cell morphology and cell cycle. The results of these studies were used to prioritize extracts for bioassay-guided fractionation, which led to the isolation of the previously identified marine natural product, eusynstyelamide B (1). This bis-indole alkaloid was shown to display an IC50 of 5 µM in MDA-MB-231 cells. Moreover, 1 caused a strong cell cycle arrest in G2/M and induced apoptosis after 72 h treatment, making this molecule an attractive candidate for further mechanism of action studies.


Asunto(s)
Puntos de Control de la Fase G2 del Ciclo Celular/efectos de los fármacos , Indoles/química , Indoles/farmacología , Urocordados/química , Alcaloides/química , Alcaloides/farmacología , Animales , Antineoplásicos/química , Antineoplásicos/farmacología , Apoptosis/efectos de los fármacos , Neoplasias de la Mama/tratamiento farmacológico , Adhesión Celular/efectos de los fármacos , Puntos de Control del Ciclo Celular/efectos de los fármacos , Línea Celular Tumoral , Femenino , Humanos
12.
NPJ Precis Oncol ; 8(1): 59, 2024 Mar 01.
Artículo en Inglés | MEDLINE | ID: mdl-38429350

RESUMEN

There are no therapeutic predictive biomarkers or representative preclinical models for high-grade gastroenteropancreatic neuroendocrine neoplasms (GEP-NEN), a highly aggressive, fatal, and heterogeneous malignancy. We established patient-derived (PD) tumoroids from biobanked tissue samples of advanced high-grade GEP-NEN patients and applied this model for targeted rapid ex vivo pharmacotyping, next-generation sequencing, and perturbational profiling. We used tissue-matched PD tumoroids to profile individual patients, compared ex vivo drug response to patients' clinical response to chemotherapy, and investigated treatment-induced adaptive stress responses.PD tumoroids recapitulated biological key features of high-grade GEP-NEN and mimicked clinical response to cisplatin and temozolomide ex vivo. When we investigated treatment-induced adaptive stress responses in PD tumoroids in silico, we discovered and functionally validated Lysine demethylase 5 A and interferon-beta, which act synergistically in combination with cisplatin. Since ex vivo drug response in PD tumoroids matched clinical patient responses to standard-of-care chemotherapeutics for GEP-NEN, our rapid and functional precision oncology approach could expand personalized therapeutic options for patients with advanced high-grade GEP-NEN.

13.
Cell Death Dis ; 13(5): 448, 2022 05 11.
Artículo en Inglés | MEDLINE | ID: mdl-35538058

RESUMEN

The family of hexokinases (HKs) catalyzes the first step of glycolysis, the ATP-dependent phosphorylation of glucose to glucose-6-phosphate. While HK1 and HK2 are ubiquitously expressed, the less well-studied HK3 is primarily expressed in hematopoietic cells and tissues and is highly upregulated during terminal differentiation of some acute myeloid leukemia (AML) cell line models. Here we show that expression of HK3 is predominantly originating from myeloid cells and that the upregulation of this glycolytic enzyme is not restricted to differentiation of leukemic cells but also occurs during ex vivo myeloid differentiation of healthy CD34+ hematopoietic stem and progenitor cells. Within the hematopoietic system, we show that HK3 is predominantly expressed in cells of myeloid origin. CRISPR/Cas9 mediated gene disruption revealed that loss of HK3 has no effect on glycolytic activity in AML cell lines while knocking out HK2 significantly reduced basal glycolysis and glycolytic capacity. Instead, loss of HK3 but not HK2 led to increased sensitivity to ATRA-induced cell death in AML cell lines. We found that HK3 knockout (HK3-null) AML cells showed an accumulation of reactive oxygen species (ROS) as well as DNA damage during ATRA-induced differentiation. RNA sequencing analysis confirmed pathway enrichment for programmed cell death, oxidative stress, and DNA damage response in HK3-null AML cells. These signatures were confirmed in ATAC sequencing, showing that loss of HK3 leads to changes in chromatin configuration and increases the accessibility of genes involved in apoptosis and stress response. Through isoform-specific pulldowns, we furthermore identified a direct interaction between HK3 and the proapoptotic BCL-2 family member BIM, which has previously been shown to shorten myeloid life span. Our findings provide evidence that HK3 is dispensable for glycolytic activity in AML cells while promoting cell survival, possibly through direct interaction with the BH3-only protein BIM during ATRA-induced neutrophil differentiation.


Asunto(s)
Hexoquinasa , Leucemia Mieloide Aguda , Supervivencia Celular/genética , Glucólisis/genética , Hexoquinasa/genética , Hexoquinasa/metabolismo , Humanos , Leucemia Mieloide Aguda/genética , Leucemia Mieloide Aguda/metabolismo , Células Mieloides/metabolismo
15.
NAR Cancer ; 3(2): zcab022, 2021 Jun.
Artículo en Inglés | MEDLINE | ID: mdl-34316709

RESUMEN

Chemotherapy is used as a standard-of-care against cancers that display high levels of inherent genome instability. Chemotherapy induces DNA damage and intensifies pressure on the DNA repair pathways that can lead to deregulation. There is an urgent clinical need to be able to track the emergence of DNA repair driven chemotherapy resistance and tailor patient staging appropriately. There have been numerous studies into chemoresistance but to date no study has elucidated in detail the roles of the key DNA repair components in resistance associated with the frontline clinical combination of anthracyclines and taxanes together. In this study, we hypothesized that the emergence of chemotherapy resistance in triple negative breast cancer was driven by changes in functional signaling in the DNA repair pathways. We identified that consistent pressure on the non-homologous end joining pathway in the presence of genome instability causes failure of the key kinase DNA-PK, loss of p53 and compensation by p73. In-turn a switch to reliance on the homologous recombination pathway and RAD51 recombinase occurred to repair residual double strand DNA breaks. Further we demonstrate that RAD51 is an actionable target for resensitization to chemotherapy in resistant cells with a matched gene expression profile of resistance highlighted by homologous recombination in clinical samples.

16.
Front Endocrinol (Lausanne) ; 12: 689600, 2021.
Artículo en Inglés | MEDLINE | ID: mdl-34421820

RESUMEN

Prostate cancer is the fourth most common cancer worldwide with definitive diagnosis reliant on biopsy and human-graded histopathology. As with other pathologies, grading based on classical haematoxylin and eosin (H&E) staining of formalin fixed paraffin-embedded material can be prone to variation between pathologists, prompting investigation of biomolecular markers. Comprising around 50% of cellular mass, and with known metabolic variations in cancer, lipids provide a promising target for molecular pathology. Here we apply isomer-resolved lipidomics in combination with imaging mass spectrometry to interrogate tissue sections from radical prostatectomy specimens. Guided by the histopathological assessment of adjacent tissue sections, regions of interest are investigated for molecular signatures associated with lipid metabolism, especially desaturation and elongation pathways. Monitoring one of the most abundant cellular membrane lipids within these tissues, phosphatidylcholine (PC) 34:1, high positive correlation was observed between the n-9 isomer (site of unsaturation 9-carbons from the methyl terminus) and epithelial cells from potential pre-malignant lesions, while the n-7 isomer abundance was observed to correlate with immune cell infiltration and inflammation. The correlation of lipid isomer signatures with human disease states in tissue suggests a future role for isomer-resolved mass spectrometry imaging in assisting pathologists with prostate cancer diagnoses and patient stratification.


Asunto(s)
Metabolismo de los Lípidos/fisiología , Linfocitos/metabolismo , Próstata/metabolismo , Neoplasias de la Próstata/metabolismo , Células Epiteliales/metabolismo , Células Epiteliales/patología , Humanos , Lipidómica , Linfocitos/patología , Masculino , Espectrometría de Masas , Próstata/patología , Prostatectomía , Neoplasias de la Próstata/patología , Neoplasias de la Próstata/cirugía
17.
Endocr Relat Cancer ; 28(5): 353-375, 2021 04 29.
Artículo en Inglés | MEDLINE | ID: mdl-33794502

RESUMEN

Hyperleptinaemia is a well-established therapeutic side effect of drugs inhibiting the androgen axis in prostate cancer (PCa), including main stay androgen deprivation therapy (ADT) and androgen targeted therapies (ATT). Given significant crossover between the adipokine hormone signalling of leptin and multiple cancer-promoting hallmark pathways, including growth, proliferation, migration, angiogenesis, metabolism and inflammation, targeting the leptin axis is therapeutically appealing, especially in advanced PCa where current therapies fail to be curative. In this study, we uncover leptin as a novel universal target in PCa and are the first to highlight increased intratumoural leptin and leptin receptor (LEPR) expression in PCa cells and patients' tumours exposed to androgen deprivation, as is observed in patients' tumours of metastatic and castrate resistant (CRPC) PCa. We also reveal the world-first preclinical evidence that demonstrates marked efficacy of targeted leptin-signalling blockade, using Allo-aca, a potent, specific, and safe LEPR peptide antagonist. Allo-aca-suppressed tumour growth and delayed progression to CRPC in mice bearing LNCaP xenografts, with reduced tumour vascularity and altered pathways of apoptosis, transcription/translation, and energetics in tumours determined as potential mechanisms underpinning anti-tumour efficacy. We highlight LEPR blockade in combination with androgen axis inhibition represents a promising new therapeutic strategy vital in advanced PCa treatment.


Asunto(s)
Neoplasias de la Próstata Resistentes a la Castración , Neoplasias de la Próstata , Antagonistas de Andrógenos/uso terapéutico , Andrógenos/metabolismo , Animales , Línea Celular Tumoral , Xenoinjertos , Humanos , Leptina , Masculino , Ratones , Neoplasias de la Próstata/metabolismo , Neoplasias de la Próstata Resistentes a la Castración/metabolismo , Receptores Androgénicos/metabolismo
18.
Cell Rep ; 34(6): 108738, 2021 02 09.
Artículo en Inglés | MEDLINE | ID: mdl-33567271

RESUMEN

Canonical fatty acid metabolism describes specific enzyme-substrate interactions that result in products with well-defined chain lengths, degree(s), and positions of unsaturation. Deep profiling of lipids across a range of prostate cancer cell lines reveals a variety of fatty acids with unusual site(s) of unsaturation that are not described by canonical pathways. The structure and abundance of these unusual lipids correlate with changes in desaturase expression and are strong indicators of cellular phenotype. Gene silencing and stable isotope tracing demonstrate that direct Δ6 and Δ8 desaturation of 14:0 (myristic), 16:0 (palmitic), and 18:0 (stearic) acids by FADS2 generate new families of unsaturated fatty acids (including n-8, n-10, and n-12) that have rarely-if ever-been reported in human-derived cells. Isomer-resolved lipidomics reveals the selective incorporation of these unusual fatty acids into complex structural lipids and identifies their presence in cancer tissues, indicating functional roles in membrane structure and signaling.


Asunto(s)
Ácido Graso Desaturasas/metabolismo , Ácidos Grasos/biosíntesis , Proteínas de Neoplasias/metabolismo , Neoplasias de la Próstata/enzimología , Transducción de Señal , Ácido Graso Desaturasas/genética , Ácidos Grasos/genética , Silenciador del Gen , Humanos , Masculino , Proteínas de Neoplasias/genética , Células PC-3 , Neoplasias de la Próstata/genética , Neoplasias de la Próstata/patología
19.
Endocr Relat Cancer ; 27(12): 711-729, 2020 12.
Artículo en Inglés | MEDLINE | ID: mdl-33112829

RESUMEN

Adiponectin is an adipokine originally identified as dysregulated in obesity, with a key role in insulin sensitisation and in maintaining systemic energy balance. However, adiponectin is progressively emerging as having aberrant signalling in multiple disease states, including prostate cancer (PCa). Circulating adiponectin is lower in patients with PCa than in non-malignant disease, and inversely correlates with cancer severity. More severe hypoadiponectinemia is observed in advanced PCa than in organ-confined disease. Given the crossover between adiponectin signalling and several cancer hallmark pathways that influence PCa growth and progression, we hypothesised that targeting dysregulated adiponectin signalling may inhibit tumour growth and progression. We, therefore, aimed to test the efficacy of correcting the hypoadiponectinemia and dysregulated adiponectin signalling observed in PCa, a world-first PCa therapeutic approach, using peptide adiponectin receptor (ADIPOR) agonist ADP355 in mice bearing subcutaneous LNCaP xenografts. We demonstrate significant evidence for PCa growth inhibition by ADP355, which slowed tumour growth and delayed progression of serum PCa biomarker, prostate-specific antigen (PSA), compared to vehicle. ADP355 conferred a significant advantage by increasing time on treatment with a delayed ethical endpoint. mRNA sequencing and protein expression analyses of tumours revealed ADP355 PCa growth inhibition may be through altered cellular energetics, cellular stress and protein synthesis, which may culminate in apoptosis, as evidenced by the increased apoptotic marker in ADP355-treated tumours. Our findings highlight the efficacy of ADP355 in targeting classical adiponectin-associated signalling pathways in vivo and provide insights into the promising future for modulating adiponectin signalling through ADIPOR agonism as a novel anti-tumour treatment modality.


Asunto(s)
Neoplasias de la Próstata/terapia , Receptores de Adiponectina/uso terapéutico , Animales , Modelos Animales de Enfermedad , Humanos , Masculino , Ratones , Ratones Desnudos
20.
Mol Cancer Res ; 18(10): 1500-1511, 2020 10.
Artículo en Inglés | MEDLINE | ID: mdl-32669400

RESUMEN

HSP90 is a molecular chaperone required for stabilization and activation of hundreds of client proteins, including many known oncoproteins. AUY922 (luminespib), a new-generation HSP90 inhibitor, exhibits potent preclinical efficacy against several cancer types including prostate cancer. However, clinical use of HSP90 inhibitors for prostate cancer has been limited by toxicity and treatment resistance. Here, we aimed to design an effective combinatorial therapeutic regimen that utilizes subtoxic doses of AUY922, by identifying potential survival pathways induced by AUY922 in clinical prostate tumors. We conducted a proteomic analysis of 30 patient-derived explants (PDE) cultured in the absence and presence of AUY922, using quantitative mass spectrometry. AUY922 significantly increased the abundance of proteins involved in oxidative phosphorylation and fatty acid metabolism in the PDEs. Consistent with these findings, AUY922-treated prostate cancer cell lines exhibited increased mitochondrial mass and activated fatty acid metabolism processes. We hypothesized that activation of fatty acid oxidation is a potential adaptive response to AUY922 treatment and that cotargeting this process will sensitize prostate cancer cells to HSP90 inhibition. Combination treatment of AUY922 with a clinical inhibitor of fatty acid oxidation, perhexiline, synergistically decreased viability of several prostate cancer cell lines, and had significant efficacy in PDEs. The novel drug combination treatment induced cell-cycle arrest and apoptosis, and attenuated the heat shock response, a known mediator of HSP90 treatment resistance. This combination warrants further preclinical and clinical investigation as a novel strategy to overcome resistance to HSP90 inhibition. IMPLICATIONS: Metabolic pathways induced in tumor cells by therapeutic agents may be critical, but targetable, mediators of treatment resistance.


Asunto(s)
Ácidos Grasos/metabolismo , Proteínas HSP90 de Choque Térmico/metabolismo , Espectrometría de Masas/métodos , Neoplasias de la Próstata/genética , Humanos , Masculino , Oxidación-Reducción , Neoplasias de la Próstata/mortalidad , Análisis de Supervivencia
SELECCIÓN DE REFERENCIAS
DETALLE DE LA BÚSQUEDA