Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 2 de 2
Filtrar
Más filtros

Bases de datos
Tipo del documento
País de afiliación
Intervalo de año de publicación
1.
Mol Psychiatry ; 29(5): 1338-1349, 2024 May.
Artículo en Inglés | MEDLINE | ID: mdl-38243072

RESUMEN

Microglia and brain-derived neurotrophic factor (BDNF) are essential for the neuroplasticity that characterizes critical developmental periods. The experience-dependent development of social behaviors-associated with the medial prefrontal cortex (mPFC)-has a critical period during the juvenile period in mice. However, whether microglia and BDNF affect social development remains unclear. Herein, we aimed to elucidate the effects of microglia-derived BDNF on social behaviors and mPFC development. Mice that underwent social isolation during p21-p35 had increased Bdnf in the microglia accompanied by reduced adulthood sociability. Additionally, transgenic mice overexpressing microglial Bdnf-regulated using doxycycline at different time points-underwent behavioral, electrophysiological, and gene expression analyses. In these mice, long-term overexpression of microglial BDNF impaired sociability and excessive mPFC inhibitory neuronal circuit activity. However, administering doxycycline to normalize BDNF from p21 normalized sociability and electrophysiological function in the mPFC, whereas normalizing BDNF from later ages (p45-p50) did not normalize electrophysiological abnormalities in the mPFC, despite the improved sociability. To evaluate the possible role of BDNF in human sociability, we analyzed the relationship between adverse childhood experiences and BDNF expression in human macrophages, a possible proxy for microglia. Results show that adverse childhood experiences positively correlated with BDNF expression in M2 but not M1 macrophages. In summary, our study demonstrated the influence of microglial BDNF on the development of experience-dependent social behaviors in mice, emphasizing its specific impact on the maturation of mPFC function, particularly during the juvenile period. Furthermore, our results propose a translational implication by suggesting a potential link between BDNF secretion from macrophages and childhood experiences in humans.


Asunto(s)
Factor Neurotrófico Derivado del Encéfalo , Ratones Transgénicos , Microglía , Neuronas , Corteza Prefrontal , Conducta Social , Animales , Femenino , Humanos , Masculino , Ratones , Factor Neurotrófico Derivado del Encéfalo/metabolismo , Macrófagos/metabolismo , Ratones Endogámicos C57BL , Microglía/metabolismo , Plasticidad Neuronal/fisiología , Neuronas/metabolismo , Corteza Prefrontal/metabolismo , Aislamiento Social/psicología
2.
Cell Rep ; 43(3): 113887, 2024 Mar 26.
Artículo en Inglés | MEDLINE | ID: mdl-38458195

RESUMEN

mRNA vaccines against the spike glycoprotein of severe acute respiratory syndrome coronavirus 2 (SARS-CoV-2) elicit strong T cell responses. However, a clonal-resolution analysis of T cell responses to mRNA vaccination has not been performed. Here, we temporally track the CD8+ T cell repertoire in individuals who received three shots of the BNT162b2 mRNA vaccine through longitudinal T cell receptor sequencing with peptide-human leukocyte antigen (HLA) tetramer analysis. We demonstrate a shift in T cell responses between the clonotypes with different kinetics: from early responders that expand rapidly after the first shot to main responders that greatly expand after the second shot. Although the main responders re-expand after the third shot, their clonal diversity is skewed, and newly elicited third responders partially replace them. Furthermore, this shift in clonal dominance occurs not only between, but also within, clonotypes specific for spike epitopes. Our study will be a valuable resource for understanding vaccine-induced T cell responses in general.


Asunto(s)
COVID-19 , SARS-CoV-2 , Humanos , Vacuna BNT162 , COVID-19/prevención & control , Linfocitos T CD8-positivos , Vacunación
SELECCIÓN DE REFERENCIAS
DETALLE DE LA BÚSQUEDA