Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 5 de 5
Filtrar
Más filtros

Bases de datos
Tipo de estudio
Tipo del documento
País de afiliación
Intervalo de año de publicación
1.
Glia ; 69(4): 1022-1036, 2021 04.
Artículo en Inglés | MEDLINE | ID: mdl-33314354

RESUMEN

Astrocytes are key players in CNS neuroinflammation and neuroregeneration that may help or hinder recovery, depending on the context of the injury. Although pro-inflammatory factors that promote astrocyte-mediated neurotoxicity have been shown to be secreted by reactive microglia, anti-inflammatory factors that suppress astrocyte activation are not well-characterized. Olfactory ensheathing cells (OECs), glial cells that wrap axons of olfactory sensory neurons, have been shown to moderate astrocyte reactivity, creating an environment conducive to regeneration. Similarly, astrocytes cultured in medium conditioned by cultured OECs (OEC-CM) show reduced nuclear translocation of nuclear factor kappa-B (NFκB), a pro-inflammatory protein that induces neurotoxic reactivity in astrocytes. In this study, we screened primary and immortalized OEC lines to identify these factors and discovered that Alpha B-crystallin (CryAB), an anti-inflammatory protein, is secreted by OECs via exosomes, coordinating an intercellular immune response. Our results showed that: (a) OEC exosomes block nuclear NFκB translocation in astrocytes while exosomes from CryAB-null OECs could not; (b) OEC exosomes could be taken up by astrocytes, and (c) CryAB treatment suppressed neurotoxicity-associated astrocyte transcripts. Our results indicate CryAB, as well as other factors secreted by OECs, are potential agents that can ameliorate, or even reverse, the growth-inhibitory environment created by neurotoxic reactive astrocytes following CNS injuries.


Asunto(s)
Astrocitos , alfa-Cristalinas , Antiinflamatorios/farmacología , Células Cultivadas , Humanos , Regeneración Nerviosa , Neuroglía , Enfermedades Neuroinflamatorias , Bulbo Olfatorio
2.
Brain Sci ; 14(7)2024 Jun 27.
Artículo en Inglés | MEDLINE | ID: mdl-39061389

RESUMEN

The central nervous system (CNS) exhibits remarkable adaptability throughout life, enabled by intricate interactions between neurons and glial cells, in particular, oligodendrocytes (OLs) and oligodendrocyte precursor cells (OPCs). This adaptability is pivotal for learning and memory, with OLs and OPCs playing a crucial role in neural circuit development, synaptic modulation, and myelination dynamics. Myelination by OLs not only supports axonal conduction but also undergoes adaptive modifications in response to neuronal activity, which is vital for cognitive processing and memory functions. This review discusses how these cellular interactions and myelin dynamics are implicated in various neurocircuit diseases and disorders such as epilepsy, gliomas, and psychiatric conditions, focusing on how maladaptive changes contribute to disease pathology and influence clinical outcomes. It also covers the potential for new diagnostics and therapeutic approaches, including pharmacological strategies and emerging biomarkers in oligodendrocyte functions and myelination processes. The evidence supports a fundamental role for myelin plasticity and oligodendrocyte functionality in synchronizing neural activity and high-level cognitive functions, offering promising avenues for targeted interventions in CNS disorders.

3.
Front Cell Neurosci ; 12: 228, 2018.
Artículo en Inglés | MEDLINE | ID: mdl-30127721

RESUMEN

One key signaling pathway known to influence neuronal migration involves the extracellular matrix protein Reelin. Typically, signaling of Reelin occurs via apolipoprotein E receptor 2 (ApoER2) and very low-density lipoprotein receptor (VLDLR), and the cytoplasmic adapter protein disabled 1 (Dab1). However, non-canonical Reelin signaling has been reported, though no receptors have yet been identified. Cariboni et al. (2005) indicated Dab1-independent Reelin signaling impacts gonadotropin releasing hormone-1 (GnRH) neuronal migration. GnRH cells are essential for reproduction. Prenatal migration of GnRH neurons from the nasal placode to the forebrain, juxtaposed to olfactory axons and olfactory ensheathing cells (OECs), has been well documented, and it is clear that alterations in migration of these cells can cause delayed or absent puberty. This study was initiated to delineate the non-canonical Reelin signaling pathways used by GnRH neurons. Chronic treatment of nasal explants with CR-50, an antibody known to interfere with Reelin homopolymerization and Dab1 phosphorylation, decreased the distance GnRH neurons and OECs migrated. Normal migration of these two cell types was observed when Reelin was co-applied with CR-50. Immunocytochemistry was performed to determine if OECs might transduce Reelin signals via the canonical pathway, and subsequently indirectly altering GnRH neuronal migration. We show that in mouse: (1) both OECs and GnRH cells express ApoER2, VLDLR and Dab1, and (2) GnRH neurons and OECs show a normal distribution in the brain of two mutant reeler lines. These results indicate that the canonical Reelin pathway is present in GnRH neurons and OECs, but that Reelin is not essential for development of these two systems in vivo.

4.
Neuroreport ; 25(8): 549-55, 2014 May 28.
Artículo en Inglés | MEDLINE | ID: mdl-24686133

RESUMEN

In this study, we found that BMP2 exerts neurotrophic effects, including a neuroprotective effect against nocodazole-induced neuritic degeneration, on neuronal cells. We also found that BMP2-induced neurotrophic effects are directly involved in Smad-dependent signaling as well as PI3K/PTEN-Akt-mTOR signaling. Moreover, BMP2-induced neurotrophic effects occur by stabilization of neuronal microtubules. Thus, these findings suggest that BMP2 can be a potential therapeutic target for nerve injury treatment.


Asunto(s)
Proteína Morfogenética Ósea 2/farmacología , Degeneración Nerviosa/prevención & control , Neuronas/efectos de los fármacos , Fármacos Neuroprotectores/farmacología , Animales , Astrocitos/efectos de los fármacos , Astrocitos/fisiología , Encéfalo/citología , Proliferación Celular/efectos de los fármacos , Células Cultivadas , Técnicas de Cocultivo , Inhibidores Enzimáticos/farmacología , Ratones , Neuritas/efectos de los fármacos , Neuroblastoma/patología , Neuronas/fisiología , Células PC12 , Ratas , Transducción de Señal/efectos de los fármacos , Tubulina (Proteína)/metabolismo
5.
J Mol Neurosci ; 49(2): 334-46, 2013 Feb.
Artículo en Inglés | MEDLINE | ID: mdl-22878912

RESUMEN

The aim of our work is to utilize the crosstalk between the vascular and the neuronal system to enhance directed neuritogenesis in uniaxial guidance scaffolds for the repair of spinal cord injury. In this study, we describe a method for angioneural regenerative engineering, i.e., for generating biodegradable scaffolds, produced by a combination of controlled freezing (freeze-casting) and lyophilization, which contain longitudinally oriented channels, and provide uniaxial directionality to support and guide neuritogenesis from neuronal cells in the presence of endothelial cells. The optimized scaffolds, composed of 2.5 % gelatin and 1 % genipin crosslinked, were characterized by an elastic modulus of ~51 kPa and longitudinal channels of ~50 µm diameter. The scaffolds support the growth of endothelial cells, undifferentiated or NGF-differentiated PC12 cells, and primary cultures of fetal chick forebrain neurons. The angioneural crosstalk, as generated by first forming endothelial cell monolayers in the scaffolds followed by injection of neuronal cells, leads to the outgrowth of long aligned neurites in the PC12/endothelial cell co-cultures also in the absence of exogenously added nerve growth factor. Neuritogenesis was not observed in the scaffolds in the absence of the endothelial cells. This methodology is a promising approach for neural tissue engineering and may be applicable for regenerative spinal cord injury repair.


Asunto(s)
Células Endoteliales/citología , Neurogénesis , Neuronas/citología , Andamios del Tejido/química , Animales , Embrión de Pollo , Módulo de Elasticidad , Liofilización/instrumentación , Liofilización/métodos , Gelatina , Iridoides , Factor de Crecimiento Nervioso/farmacología , Células-Madre Neurales/citología , Células PC12 , Ratas , Traumatismos de la Médula Espinal/terapia , Ingeniería de Tejidos/métodos
SELECCIÓN DE REFERENCIAS
DETALLE DE LA BÚSQUEDA