Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 6 de 6
Filtrar
1.
Development ; 138(19): 4315-26, 2011 Oct.
Artículo en Inglés | MEDLINE | ID: mdl-21865321

RESUMEN

The majority of the cortical cholinergic innervation implicated in attention and memory originates in the nucleus basalis of Meynert and in the horizontal limb of the diagonal band nucleus of the basal prosencephalon. Functional alterations in this system give rise to neuropsychiatric disorders as well as to the cognitive alterations described in Parkinson and Alzheimer's diseases. Despite the functional importance of these basal forebrain cholinergic neurons very little is known about their origin and development. Previous studies suggest that they originate in the medial ganglionic eminence of the telencephalic subpallium; however, our results identified Tbr1-expressing, reelin-positive neurons migrating from the ventral pallium to the subpallium that differentiate into cholinergic neurons in the basal forebrain nuclei projecting to the cortex. Experiments with Tbr1 knockout mice, which lack ventropallial structures, confirmed the pallial origin of cholinergic neurons in Meynert and horizontal diagonal band nuclei. Also, we demonstrate that Fgf8 signaling in the telencephalic midline attracts these neurons from the pallium to follow a tangential migratory route towards the basal forebrain.


Asunto(s)
Núcleo Basal de Meynert/embriología , Neuronas/metabolismo , Prosencéfalo/embriología , Prosencéfalo/metabolismo , Receptores Colinérgicos/metabolismo , Núcleos Septales/embriología , Animales , Moléculas de Adhesión Celular Neuronal/metabolismo , Línea Celular , Cognición , Proteínas de Unión al ADN/metabolismo , Biología Evolutiva/métodos , Proteínas de la Matriz Extracelular/metabolismo , Factor 8 de Crecimiento de Fibroblastos/metabolismo , Hipocampo/embriología , Humanos , Ratones , Ratones Endogámicos ICR , Ratones Transgénicos , Modelos Biológicos , Proteínas del Tejido Nervioso/metabolismo , Proteína Reelina , Serina Endopeptidasas/metabolismo , Transducción de Señal , Proteínas de Dominio T Box
2.
EMBO J ; 28(8): 1043-54, 2009 Apr 22.
Artículo en Inglés | MEDLINE | ID: mdl-19300439

RESUMEN

We have earlier shown that microglia, the immune cells of the CNS, release microparticles from cell plasma membrane after ATP stimulation. These vesicles contain and release IL-1beta, a crucial cytokine in CNS inflammatory events. In this study, we show that microparticles are also released by astrocytes and we get insights into the mechanism of their shedding. We show that, on activation of the ATP receptor P2X7, microparticle shedding is associated with rapid activation of acid sphingomyelinase, which moves to plasma membrane outer leaflet. ATP-induced shedding and IL-1beta release are markedly reduced by the inhibition of acid sphingomyelinase, and completely blocked in glial cultures from acid sphingomyelinase knockout mice. We also show that p38 MAPK cascade is relevant for the whole process, as specific kinase inhibitors strongly reduce acid sphingomyelinase activation, microparticle shedding and IL-1beta release. Our results represent the first demonstration that activation of acid sphingomyelinase is necessary and sufficient for microparticle release from glial cells and define key molecular effectors of microparticle formation and IL-1beta release, thus, opening new strategies for the treatment of neuroinflammatory diseases.


Asunto(s)
Micropartículas Derivadas de Células/enzimología , Neuroglía/metabolismo , Esfingomielina Fosfodiesterasa/metabolismo , Adenosina Trifosfato/análogos & derivados , Adenosina Trifosfato/metabolismo , Inhibidores de Captación Adrenérgica/metabolismo , Marcadores de Afinidad/metabolismo , Animales , Encéfalo/citología , Encéfalo/metabolismo , Encéfalo/patología , Micropartículas Derivadas de Células/ultraestructura , Células Cultivadas , Activación Enzimática , Imipramina/metabolismo , Interleucina-1beta/metabolismo , Ratones , Ratones Noqueados , Modelos Biológicos , Neuroglía/citología , Tamaño de la Partícula , Receptores Purinérgicos P2/metabolismo , Receptores Purinérgicos P2X7 , Transducción de Señal/fisiología , Esfingomielina Fosfodiesterasa/genética , Proteínas Quinasas p38 Activadas por Mitógenos/metabolismo , Familia-src Quinasas/metabolismo
3.
Neuron ; 54(3): 461-77, 2007 May 03.
Artículo en Inglés | MEDLINE | ID: mdl-17481398

RESUMEN

Via its extracellular N-terminal domain (NTD), the AMPA receptor subunit GluR2 promotes the formation and growth of dendritic spines in cultured hippocampal neurons. Here we show that the first N-terminal 92 amino acids of the extracellular domain are necessary and sufficient for GluR2's spine-promoting activity. Moreover, overexpression of this extracellular domain increases the frequency of miniature excitatory postsynaptic currents (mEPSCs). Biochemically, the NTD of GluR2 can interact directly with the cell adhesion molecule N-cadherin, in cis or in trans. N-cadherin-coated beads recruit GluR2 on the surface of hippocampal neurons, and N-cadherin immobilization decreases GluR2 lateral diffusion on the neuronal surface. RNAi knockdown of N-cadherin prevents the enhancing effect of GluR2 on spine morphogenesis and mEPSC frequency. Our data indicate that in hippocampal neurons N-cadherin and GluR2 form a synaptic complex that stimulates presynaptic development and function as well as promoting dendritic spine formation.


Asunto(s)
Cadherinas/metabolismo , Espacio Extracelular/metabolismo , Receptores AMPA/metabolismo , Columna Vertebral/metabolismo , Animales , Células Cultivadas , Embrión de Mamíferos , Potenciales Postsinápticos Excitadores/fisiología , Proteínas Fluorescentes Verdes/metabolismo , Hipocampo/citología , Mutación , Proteínas del Tejido Nervioso/metabolismo , Neuronas/ultraestructura , Técnicas de Placa-Clamp/métodos , Estructura Terciaria de Proteína/fisiología , Transporte de Proteínas/efectos de los fármacos , Transporte de Proteínas/fisiología , Interferencia de ARN/fisiología , Ratas , Transfección/métodos
4.
Purinergic Signal ; 5(2): 233-40, 2009 Jun.
Artículo en Inglés | MEDLINE | ID: mdl-19280367

RESUMEN

P2X(7) receptor is a ligand-gated ion channel, which can induce the opening of large membrane pores. Here, we provide evidence that the receptor induces pore formation in astrocytes cultured from cortex, but not from the hippocampus. Furthermore, P2X(7) receptor activation promptly induces p38 mitogen-activated protein kinase (MAPK) phosphorylation in cortical but not in hippocampal astrocytes. Given the role of p38 MAPK activation in pore opening, these data suggest that defective coupling of the receptor to the enzyme could occur in hippocampal cultures. The different capabilities of the receptor to open membrane pores cause relevant functional consequences. Upon pore formation, caspase-1 is activated and pro-IL1-beta is cleaved and released extracellularly. The receptor stimulation does not result in interleukin-1beta secretion from hippocampal astrocytes, although the pro-cytokine is present in the cytosol of lipopolysaccharide-primed cultures. These results open the possibility that activation of P2X(7) receptors differently influences the neuroinflammatory processes in distinct brain regions.

5.
Mol Cell Neurosci ; 28(4): 650-60, 2005 Apr.
Artículo en Inglés | MEDLINE | ID: mdl-15797712

RESUMEN

Here, we use a cell surface thrombin cleavage assay to investigate directly the role of NSF in the surface delivery and synaptic accumulation of alpha-amino-3-hydroxy-5-methylisoxazolepropionate (AMPA) receptors. In cultured hippocampal neurons, the GluR2 subunit (which specifically interacts with NSF) inserts rapidly into the plasma membrane from intracellular compartments and accumulates in synaptic sites. In contrast, surface accumulation of GluR3 (a subunit that does not interact with NSF) or a GluR2 mutant defective in NSF binding (DeltaA849-Q853) occurs initially at extrasynaptic sites and is kinetically slower than wild-type GluR2. Introducing a binding site for NSF into GluR3 (GluR3NSF) generates a subunit that behaves like GluR2 in terms of kinetics and site of surface insertion. These data suggest that the NSF interaction is necessary for rapid incorporation of AMPA receptor subunits into synapses and is sufficient to confer this property on GluR3.


Asunto(s)
Receptores AMPA/metabolismo , Sinapsis/metabolismo , Proteínas de Transporte Vesicular/metabolismo , Animales , Sitios de Unión/efectos de los fármacos , Sitios de Unión/fisiología , Células Cultivadas , Glicina/metabolismo , Glicina/farmacología , Hipocampo/química , Hipocampo/efectos de los fármacos , Hipocampo/metabolismo , Proteínas Sensibles a N-Etilmaleimida , N-Metilaspartato/metabolismo , N-Metilaspartato/farmacología , Ratas , Receptores AMPA/análisis , Sinapsis/química , Sinapsis/efectos de los fármacos , Proteínas de Transporte Vesicular/análisis
6.
Cereb Cortex ; 13(7): 736-48, 2003 Jul.
Artículo en Inglés | MEDLINE | ID: mdl-12816889

RESUMEN

We have previously demonstrated that the antiproliferative agent methylazoxymethanol acetate (MAM) is able to induce in rats cerebral heterotopia that share striking similarities with those observed in human periventricular nodular heterotopia (PNH), a cerebral dysgenesis frequently observed in human patients affected by drug-resistant focal epilepsy. In this study, we investigated the time-course of neurogenesis in the cerebral heterotopia of MAM-treated rats, with the idea of understanding why PNH develop in human patients. For these goals, we analyzed the cytoarchitectural features, the time of neurogenesis and the cellular phenotype of the heterotopia, by means of BrdU immunocytochemistry and confocal immunofluorescence experiments. Our data demonstrate that the different types of heterotopia in MAM-treated rats are formed through the same altered neurogenetic process, which follows quite organized neurogenetic gradients. The MAM-induced ablation of an early wave of cortical neurons is sufficient to alter per se the migration and differentiation of subsequently generated neurons, which in turn set the base for the formation of the different heterotopic structures. The neurogenesis of MAM-induced heterotopia may explain the origin and intrinsic epileptogenicity of periventricular nodular heterotopia in human patients.


Asunto(s)
Encefalopatías/embriología , Encefalopatías/patología , Corteza Cerebral , Coristoma/embriología , Coristoma/patología , Acetato de Metilazoximetanol/análogos & derivados , Animales , Encefalopatías/inducido químicamente , Encefalopatías/genética , Bromodesoxiuridina , Coristoma/inducido químicamente , Coristoma/genética , Modelos Animales de Enfermedad , Femenino , Microscopía Confocal , Morfogénesis , Neuronas/efectos de los fármacos , Neuronas/patología , Fenotipo , Embarazo , Ratas , Ratas Sprague-Dawley
SELECCIÓN DE REFERENCIAS
DETALLE DE LA BÚSQUEDA