Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 8 de 8
Filtrar
Más filtros

Bases de datos
Tipo del documento
Asunto de la revista
País de afiliación
Intervalo de año de publicación
1.
Hum Brain Mapp ; 44(17): 5892-5905, 2023 12 01.
Artículo en Inglés | MEDLINE | ID: mdl-37837630

RESUMEN

The examination of multivariate brain morphometry patterns has gained attention in recent years, especially for their powerful exploratory capabilities in the study of differences between patients and controls. Among the many existing methods and tools for the analysis of brain anatomy based on structural magnetic resonance imaging data, data-driven source-based morphometry (SBM) focuses on the exploratory detection of such patterns. Here, we implement a semi-blind extension of SBM, called constrained source-based morphometry (constrained SBM), which enables the extraction of maximally independent reference-alike sources using the constrained independent component analysis (ICA) approach. To do this, we combine SBM with a set of reference components covering the full brain, derived from a large independent data set (UKBiobank), to provide a fully automated SBM framework. This also allows us to implement a federated version of constrained SBM (cSBM) to allow analysis of data that is not locally accessible. In our proposed decentralized constrained source-based morphometry (dcSBM), the original data never leaves the local site. Each site operates constrained ICA on its private local data using a common distributed computation platform. Next, an aggregator/master node aggregates the results estimated from each local site and applies statistical analysis to estimate the significance of the sources. Finally, we utilize two additional multisite patient data sets to validate our model by comparing the resulting group difference estimates from both cSBM and dcSBM.


Asunto(s)
Mapeo Encefálico , Encéfalo , Humanos , Encéfalo/patología , Mapeo Encefálico/métodos , Imagen por Resonancia Magnética/métodos
2.
Hum Brain Mapp ; 43(8): 2503-2518, 2022 06 01.
Artículo en Inglés | MEDLINE | ID: mdl-35274791

RESUMEN

Dynamic functional network connectivity (dFNC) analysis is a widely used approach for capturing brain activation patterns, connectivity states, and network organization. However, a typical sliding window plus clustering (SWC) approach for analyzing dFNC models the system through a fixed sequence of connectivity states. SWC assumes connectivity patterns span throughout the brain, but they are relatively spatially constrained and temporally short-lived in practice. Thus, SWC is neither designed to capture transient dynamic changes nor heterogeneity across subjects/time. We propose a state-space time series summarization framework called "statelets" to address these shortcomings. It models functional connectivity dynamics at fine-grained timescales, adapting time series motifs to changes in connectivity strength, and constructs a concise yet informative representation of the original data that conveys easily comprehensible information about the phenotypes. We leverage the earth mover distance in a nonstandard way to handle scale differences and utilize kernel density estimation to build a probability density profile for local motifs. We apply the framework to study dFNC of patients with schizophrenia (SZ) and healthy control (HC). Results demonstrate SZ subjects exhibit reduced modularity in their brain network organization relative to HC. Statelets in the HC group show an increased recurrence across the dFNC time-course compared to the SZ. Analyzing the consistency of the connections across time reveals significant differences within visual, sensorimotor, and default mode regions where HC subjects show higher consistency than SZ. The introduced approach also enables handling dynamic information in cross-modal and multimodal applications to study healthy and disordered brains.


Asunto(s)
Mapeo Encefálico , Esquizofrenia , Encéfalo/diagnóstico por imagen , Mapeo Encefálico/métodos , Análisis por Conglomerados , Humanos , Imagen por Resonancia Magnética/métodos , Esquizofrenia/diagnóstico por imagen
3.
Hum Brain Mapp ; 43(7): 2289-2310, 2022 05.
Artículo en Inglés | MEDLINE | ID: mdl-35243723

RESUMEN

Privacy concerns for rare disease data, institutional or IRB policies, access to local computational or storage resources or download capabilities are among the reasons that may preclude analyses that pool data to a single site. A growing number of multisite projects and consortia were formed to function in the federated environment to conduct productive research under constraints of this kind. In this scenario, a quality control tool that visualizes decentralized data in its entirety via global aggregation of local computations is especially important, as it would allow the screening of samples that cannot be jointly evaluated otherwise. To solve this issue, we present two algorithms: decentralized data stochastic neighbor embedding, dSNE, and its differentially private counterpart, DP-dSNE. We leverage publicly available datasets to simultaneously map data samples located at different sites according to their similarities. Even though the data never leaves the individual sites, dSNE does not provide any formal privacy guarantees. To overcome that, we rely on differential privacy: a formal mathematical guarantee that protects individuals from being identified as contributors to a dataset. We implement DP-dSNE with AdaCliP, a method recently proposed to add less noise to the gradients per iteration. We introduce metrics for measuring the embedding quality and validate our algorithms on these metrics against their centralized counterpart on two toy datasets. Our validation on six multisite neuroimaging datasets shows promising results for the quality control tasks of visualization and outlier detection, highlighting the potential of our private, decentralized visualization approach.


Asunto(s)
Algoritmos , Privacidad , Humanos , Neuroimagen , Control de Calidad , Proyectos de Investigación
4.
bioRxiv ; 2024 Jan 12.
Artículo en Inglés | MEDLINE | ID: mdl-38260682

RESUMEN

Positron emission tomography (PET) and magnetic resonance imaging (MRI) are both widely used neuroimaging techniques to study brain function. Although whole brain resting functional MRI (fMRI) connectomes are widely used, the integration or association of whole brain functional connectomes with PET data are rarely done. This likely stems from the fact that PET data is typically analyzed by using a regions of interest approach, while whole brain spatial networks and their connectivity (covariation) receive much less attention. As a result, to date, there have been no direct comparisons between whole brain PET and fMRI connectomes. In this study, we present a method that uses spatially constrained independent component analysis (scICA) to estimate corresponding PET and fMRI connectomes and examine the relationship between them using mild cognitive impairment (MCI) datasets. Our results demonstrate highly modularized PET connectome patterns that complement those identified from resting fMRI. In particular, fMRI showed strong intra-domain connectivity with interdomain anticorrelation in sensorimotor and visual domains as well as default mode network. PET amyloid data showed similar strong intra-domain effects, but showed much higher correlations within cognitive control and default mode domains, as well as anticorrelation between cerebellum and other domains. The estimated PET networks have similar, but not identical, network spatial patterns to the resting fMRI networks, with the PET networks being slightly smoother and, in some cases, showing variations in subnodes. We also analyzed the differences between individuals with MCI receiving medication versus a placebo. Results show both common and modality specific treatment effects on fMRI and PET connectomes. From our fMRI analysis, we observed higher activation differences in various regions, such as the connection between the thalamus and middle occipital gyrus, as well as the insula and right middle occipital gyrus. Meanwhile, the PET analysis revealed increased activation between the anterior cingulate cortex and the left inferior parietal lobe, along with other regions, in individuals who received medication versus placebo. In sum, our novel approach identifies corresponding whole-brain PET and fMRI networks and connectomes. While we observed common patterns of network connectivity, our analysis of the MCI treatment and placebo groups revealed that each modality identifies a unique set of networks, highlighting differences between the two groups.

5.
Brain Connect ; 14(2): 130-140, 2024 Mar.
Artículo en Inglés | MEDLINE | ID: mdl-38308475

RESUMEN

Aim: To develop an approach to evaluate multiple overlapping brain functional change patterns (FCPs) in functional network connectivity (FNC) and apply to study developmental changes in brain function. Introduction: FNC, the network analog of functional connectivity (FC), is commonly used to capture the intrinsic functional relationships among brain networks. Ongoing research on longitudinal changes of intrinsic FC across whole-brain functional networks has proven useful for characterizing age-related changes, but to date, there has been little focus on capturing multivariate patterns of FNC change with brain development. Methods: In this article, we introduce a novel approach to evaluate multiple overlapping FCPs by utilizing FNC matrices. We computed FNC matrices from the large-scale Adolescent Brain Cognitive Development data using fully automated spatially constrained independent component analysis (ICA). We next evaluated changes in these patterns for a 2-year period using a second-level ICA on the FNC change maps. Results: Our proposed approach reveals several highly structured (modular) FCPs and significant results including strong brain FC between visual and sensorimotor domains that increase with age. We also find several FCPs that are associated with longitudinal changes of psychiatric problems, cognition, and age in the developing brain. Interestingly, FCP cross-covariation, reflecting coupling between maximally independent FCPs, also shows significant differences between upper and lower quartile loadings for longitudinal changes in age, psychiatric problems, and cognition scores, as well as baseline age in the developing brain. FCP patterns and results were also found to be highly reliable based on analysis of data collected in a separate scan session. Conclusion: In sum, our results show evidence of consistent multivariate patterns of functional change in emerging adolescents and the proposed approach provides a useful and general tool to evaluate covarying patterns of whole-brain functional changes in longitudinal data. Impact statement In this article, we introduce a novel approach utilizing functional network connectivity (FNC) matrices to estimate multiple overlapping brain functional change patterns (FCPs). The findings demonstrate several well-structured FCPs that exhibit significant changes for a 2-year period, particularly in the functional connectivity between the visual and sensorimotor domains. In addition, we discover several FCPs that are associated with psychopathology, cognition, and age. Finally, our proposed approach for studying age-related FCPs represents a pioneering method that provides a valuable tool for assessing interconnected patterns of whole-brain functional changes in longitudinal data and may be useful to study change over time with applicability to many other areas, including the study of longitudinal changes within diagnostic groups, treatment effects, aging effects, and more.


Asunto(s)
Encéfalo , Imagen por Resonancia Magnética , Adolescente , Humanos , Imagen por Resonancia Magnética/métodos , Cognición , Envejecimiento , Mapeo Encefálico
6.
bioRxiv ; 2024 Apr 10.
Artículo en Inglés | MEDLINE | ID: mdl-38645216

RESUMEN

Functional and structural magnetic resonance imaging (fMRI and sMRI) are complementary approaches that can be used to study longitudinal brain changes in adolescents. Each individual modality offers distinct insights into the brain. Each individual modality may overlook crucial aspects of brain analysis. By combining them, we can uncover hidden brain connections and gain a more comprehensive understanding. In previous work, we identified multivariate patterns of change in whole-brain function during adolescence. In this work, we focus on linking functional change patterns (FCPs) to brain structure. We introduce two approaches and applied them to data from the Adolescent Brain and Cognitive Development (ABCD) dataset. First, we evaluate voxelwise sMRI-FCP coupling to identify structural patterns linked to our previously identified FCPs. Our approach revealed multiple interesting patterns in functional network connectivity (FNC) and gray matter volume (GMV) data that were linked to subject level variation. FCP components 2 and 4 exhibit extensive associations between their loadings and voxel-wise GMV data. Secondly, we leveraged a symmetric multimodal fusion technique called multiset canonical correlation analysis (mCCA) + joint independent component analysis (jICA). Using this approach, we identify structured FCPs such as one showing increased connectivity between visual and sensorimotor domains and decreased connectivity between sensorimotor and cognitive control domains, linked to structural change patterns (SCPs) including alterations in the bilateral sensorimotor cortex. Interestingly, females exhibit stronger coupling between brain functional and structural changes than males, highlighting sex-related differences. The combined results from both asymmetric and symmetric multimodal fusion methods underscore the intricate sex-specific nuances in neural dynamics. By utilizing two complementary multimodal approaches, our study enhances our understanding of the dynamic nature of brain connectivity and structure during the adolescent period, shedding light on the nuanced processes underlying adolescent brain development.

7.
Artículo en Inglés | MEDLINE | ID: mdl-38082649

RESUMEN

Functional magnetic resonance imaging (fMRI) and structural magnetic resonance imaging (sMRI) are two widely used techniques to analyze longitudinal brain functional and structural change in adolescents. Although longitudinal changes in intrinsic functional and structural changes have been studied separately, most studies focus on univariate change rather than estimating multivariate patterns of functional network connectivity (FNC) and gray matter (GM) changes with increased age. To analyze whole-brain structural and functional changes with increased age, we suggest two complementary techniques (1: linking of functional change pattern (FCP) to voxel-wise ∆GM and 2: the connection between FCP and structural change pattern (SCP)). In this study, we apply our approaches to the functional and GM data from the large-scale Adolescent Brain and Cognitive Development (ABCD) data. We find a significant correlation between FCP and voxel-wise ∆GM for two components. We also investigate the links between FCP and SCP and hypothesize that functional connectivity and GM continue to exhibit linked changes during adolescence.Clinical Relevance- This work captures the whole-brain functional and structural change patterns link by introducing two complementary techniques.


Asunto(s)
Encéfalo , Sustancia Gris , Adolescente , Humanos , Encéfalo/diagnóstico por imagen , Encéfalo/patología , Sustancia Gris/patología , Imagen por Resonancia Magnética/métodos , Corteza Cerebral
8.
Brain Connect ; 11(2): 132-145, 2021 03.
Artículo en Inglés | MEDLINE | ID: mdl-33317408

RESUMEN

Aim: To determine the optimal number of connectivity states in dynamic functional connectivity analysis. Introduction: Recent work has focused on the study of dynamic (vs. static) brain connectivity in resting functional magnetic resonance imaging data. In this work, we focus on temporal correlation between time courses extracted from coherent networks called functional network connectivity (FNC). Dynamic FNC is most commonly estimated using a sliding window-based approach to capture short periods of FNC change. These data are then clustered to estimate transient connectivity patterns or states. Determining the number of states is a challenging problem. The elbow criterion is one of the widely used approaches to determine the connectivity states. Materials and Methods: In our work, we present an alternative approach that evaluates classification (e.g., healthy controls [HCs] vs. patients) as a measure to select the optimal number of states (clusters). We apply different classification strategies to perform classification between HCs and patients with schizophrenia for different numbers of states (i.e., varying the model order in the clustering algorithm). We compute cross-validated accuracy for different model orders to evaluate the classification performance. Results: Our results are consistent with our earlier work which shows that overall accuracy improves when dynamic connectivity measures are used separately or in combination with static connectivity measures. Results also show that the optimal model order for classification is different from that using the standard k-means model selection method, and that such optimization improves cross-validated accuracy. The optimal model order obtained from the proposed approach also gives significantly improved classification performance over the traditional model selection method. Conclusion: The observed results suggest that if one's goal is to perform classification, using the proposed approach as a criterion for selecting the optimal number of states in dynamic connectivity analysis leads to improved accuracy in hold-out data.


Asunto(s)
Imagen por Resonancia Magnética , Esquizofrenia , Encéfalo/diagnóstico por imagen , Mapeo Encefálico , Humanos , Descanso , Esquizofrenia/diagnóstico por imagen
SELECCIÓN DE REFERENCIAS
DETALLE DE LA BÚSQUEDA