Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 3 de 3
Filtrar
Más filtros

Bases de datos
Tipo de estudio
Tipo del documento
País de afiliación
Intervalo de año de publicación
1.
Artículo en Inglés | MEDLINE | ID: mdl-38280008

RESUMEN

Phytocompounds have shown hopeful results in cancer therapy. Piperlongumine (PIP), a naturally derived bioactive alkaloid found in our dietary spice, exhibits promising pharmacological relevance including anticancer activity. This study reconnoitred the anti-lung cancer effect of PIP and the allied mechanisms, in vitro and ex vivo. The cytotoxic, anti-proliferative, and apoptotic effects of PIP on lung cancer cells (LCC) were checked via cell viability, colony formation, cell migration, invasion, comet assay, and various staining techniques. Further, multicellular spheroids assay explored the anti-lung cancer potential of PIP, ex vivo. Preliminary results explored that PIP exerts selective cytotoxic and anti-proliferative effects on LCC by DNA damage and cell cycle arrest. PIP remarkably escalated the cellular and mitochondrial reactive oxygen species (ROS) generation and promoted dissipation of mitochondrial membrane potential (MMP), which triggers activation of caspase-dependent apoptotic pathway in LCC. Mechanistically, PIP showed F-actin deformation mediated significant anti-migratory and anti-invasive activity against LCC. Herein, we also found that F-actin dis-organization modulates the expression of epithelial to mesenchymal transition (EMT) markers and inhibits the expression of stemness marker proteins, like SOX9, CD-133, and CD-44. Moreover, PIP effectively reduced the size of spheroids with strong apoptotic and cytotoxic effects, ex vivo. This has been the first study to discover the high expression of SOX9 supporting the survival of LCC, whereas its inhibition induces higher sensitivity to PIP treatment. This study concludes a newer therapeutic agent (PIP) with promising anticancer activity against LCC by escalating ROS and attenuating MMP, stemness, and EMT.

2.
Biotechnol J ; 19(2): e2300370, 2024 Jan.
Artículo en Inglés | MEDLINE | ID: mdl-38375578

RESUMEN

Exosomes have been the hidden treasure of the cell in terms of cellular interactions, transportation and therapy. The native exosomes (NEx) secreted by the parent cells hold promising aspects in cancer diagnosis and therapy. NEx has low immunogenicity, high biocompatibility, low toxicity and high stability which enables them to be an ideal prognostic biomarker in cancer diagnosis. However, due to heterogeneity, NEx lacks specificity and accuracy to be used as therapeutic drug delivery vehicle in cancer therapy. Transforming these NEx with their innate structure and multiple receptors to engineered exosomes (EEx) can provide better opportunities in the field of cancer theranostics. The surface of the NEx exhibits numeric receptors which can be modified to pave the direction of its therapeutic drug delivery in cancer therapy. Through surface membrane, EEx can be modified with increased drug loading potentiality and higher target specificity to act as a therapeutic nanocarrier for drug delivery. This review provides insights into promising aspects of NEx as a prognostic biomarker and drug delivery tool along with its need for the transformation to EEx in cancer theranostics. We have also highlighted different methods associated with NEx transformations, their nano-bio interaction with recipient cells and major challenges of EEx for clinical application in cancer theranostics.


Asunto(s)
Exosomas , Neoplasias , Humanos , Exosomas/química , Medicina de Precisión , Neoplasias/diagnóstico , Neoplasias/tratamiento farmacológico , Sistemas de Liberación de Medicamentos , Biomarcadores/metabolismo
3.
Drug Discov Today ; 27(9): 2541-2550, 2022 09.
Artículo en Inglés | MEDLINE | ID: mdl-35636723

RESUMEN

The dysregulated expression of the transcription factor (TF) Sry-related HMG box 9 (SOX9) has been extensively correlated with various biological effects, including the initiation and progression of cancer. Differential expression of SOX9 has been positively correlated with cancer cell growth, invasion, migration, metastasis, and therapy resistance. Studies showed that expression of SOX9 affects the expression of various miRNAs and vice versa, resulting in the development of cancer drug resistance. However, modulating the expression of SOX9 reverses drug resistance by modulating the expression of miRNAs. Therefore, in this review, we summarize current research focusing on SOX9 as a cancer therapeutic target and a prognostic biomarker of cancer drug resistance.


Asunto(s)
Antineoplásicos , MicroARNs , Neoplasias , Biomarcadores , Resistencia a Antineoplásicos , Pronóstico , Factor de Transcripción SOX9
SELECCIÓN DE REFERENCIAS
DETALLE DE LA BÚSQUEDA