Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 2 de 2
Filtrar
Más filtros

Bases de datos
Tipo del documento
País de afiliación
Intervalo de año de publicación
1.
J Sci Food Agric ; 2024 Jul 02.
Artículo en Inglés | MEDLINE | ID: mdl-38953558

RESUMEN

BACKGROUND: Rice is considered a high estimated glycemic index (eGI) food because of its higher starch digestibility, which leads to type II diabetes and obesity as a result of a sedentary life style. Furthermore, the incresaing diabetes cases in rice-consuming populations worldwide need alternative methods to reduce the glycemic impact of rice, with dietary prescriptions based on the eGI value of food being an attractive and practical concept. Rice is often paired with vegetables, pulses, tubers and roots, a staple food group in Africa, Latin America and Asia, which are rich in fibre and health-promoting compounds. RESULTS: Rice from four categories (high protein, scented, general and pigmented) was analyzed for eGI and resistant starch (RS) content. Among the genotypes, Improved Lalat had the lowest eGI (53.12) with a relatively higher RS content (2.17%), whereas Hue showed the lowest RS (0.19%) with the highest eGI (76.3) value. The addition of tuber crops to rice caused a significant lowering of eGI where the maximum beneficial effect was shown by elephant foot yam (49.37) followed by yam bean (53.07) and taro (54.43). CONCLUSION: The present study suggests that combining rice with suitable tuber crops can significantly reduce its eGI value, potentially reducing the burden of diet-associated lifestyle diseases particularly diabetics. © 2024 Society of Chemical Industry.

2.
Curr Microbiol ; 80(7): 219, 2023 May 19.
Artículo en Inglés | MEDLINE | ID: mdl-37204538

RESUMEN

Modern and industrialized agriculture enhanced farm output during the last few decades, but it became possible at the cost of agricultural sustainability. Industrialized agriculture focussed only on the increase in crop productivity and the technologies involved were supply-driven, where enough synthetic chemicals were applied and natural resources were overexploited with the erosion of genetic diversity and biodiversity. Nitrogen is an essential nutrient required for plant growth and development. Even though nitrogen is available in large quantities in the atmosphere, it cannot be utilized by plants directly with the only exception of legumes which have the unique ability to fix atmospheric nitrogen and the process is known as biological nitrogen fixation (BNF). Rhizobium, a group of gram-negative soil bacteria, helps in the formation of root nodules in legumes and takes part in the BNF. The BNF has great significance in agriculture as it acts as a fertility restorer in soil. Continuous cereal-cereal cropping system, which is predominant in a major part of the world, often results in a decline in soil fertility, while legumes add nitrogen and improve the availability of other nutrients too. In the present context of the declining trend of the yield of some important crops and cropping systems, it is the need of the hour for enriching soil health to achieve agricultural sustainability, where Rhizobium can play a magnificent role. Though the role of Rhizobium in biological nitrogen fixation is well documented, their behaviour and performance in different agricultural environments need to be studied further for a better understanding. In the article, an attempt has been made to give an insight into the behaviour, performance and mode of action of different Rhizobium species and strains under versatile conditions.


Asunto(s)
Fabaceae , Rhizobium , Rhizobium/genética , Cambio Climático , Fabaceae/microbiología , Agricultura , Suelo , Producción de Cultivos , Fijación del Nitrógeno , Verduras , Nitrógeno/análisis
SELECCIÓN DE REFERENCIAS
DETALLE DE LA BÚSQUEDA