Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 3 de 3
Filtrar
Más filtros

Bases de datos
Tipo de estudio
Tipo del documento
Asunto de la revista
País de afiliación
Intervalo de año de publicación
1.
J Cell Physiol ; 234(6): 8019-8027, 2019 06.
Artículo en Inglés | MEDLINE | ID: mdl-30341907

RESUMEN

The maximum number of germ cells is present during the fetal life in mammals. Follicular atresia results in rapid depletion of germ cells from the cohort of the ovary. At the time of puberty, only a few hundred (<1%) germ cells are either culminated into oocytes or further get eliminated during the reproductive life. Although apoptosis plays a major role, necrosis as well as necroptosis, might also be involved in germ cell elimination from the mammalian ovary. Both necrosis and necroptosis show similar morphological features and are characterized by an increase in cell volume, cell membrane permeabilization, and rupture that lead to cellular demise. Necroptosis is initiated by tumor necrosis factor and operated through receptor interacting protein kinase as well as mixed lineage kinase domain-like protein. The acetylcholinesterase, cytokines, starvation, and oxidative stress play important roles in necroptosis-mediated granulosa cell death. The granulosa cell necroptosis directly or indirectly induces susceptibility toward necroptotic or apoptotic cell death in oocytes. Indeed, prevention of necrosis and necroptosis pathways using their specific inhibitors could enhance growth/differentiation factor-9 expression, improve survivability as well as the meiotic competency of oocytes, and prevent decline of reproductive potential in several mammalian species and early onset of menopause in women. This study updates the information and focuses on the possible involvement of necrosis and necroptosis in germ cell depletion from the mammalian ovary.


Asunto(s)
Necroptosis/genética , Necrosis/genética , Oocitos/crecimiento & desarrollo , Ovario/crecimiento & desarrollo , Animales , Apoptosis/genética , Femenino , Células Germinativas/crecimiento & desarrollo , Células Germinativas/metabolismo , Células de la Granulosa/metabolismo , Humanos , Mamíferos , Oocitos/metabolismo , Ovario/metabolismo , Estrés Oxidativo/genética
2.
Growth Factors ; 36(1-2): 41-47, 2018 04.
Artículo en Inglés | MEDLINE | ID: mdl-29842809

RESUMEN

In mammals, preovulatory oocytes are encircled by several layers of granulosa cells (GCs) in follicular microenvironment. These follicular oocytes are arrested at diplotene arrest due to high level of cyclic nucleotides from encircling GCs. Pituitary gonadotropin acts at the level of encircling GCs and increases adenosine 3',5'-cyclic monophosphate (cAMP) and guanosine 3',5'-cyclic monophosphate (cGMP) and activates mitogen-activated protein kinase 3/1 (MAPK3/1) signaling pathway. The MAPK3/1 disrupts the gap junctions between encircling GCs and oocyte. The disruption of gap junctions interrupts the transfer of cyclic nucleotides to the oocyte that results a drop in intraoocyte cAMP level. A transient decrease in oocyte cAMP level triggers maturation promoting factor (MPF) destabilization. The destabilized MPF finally triggers meiotic resumption from diplotene arrest in follicular oocyte. Thus, MAPK3/1 from GCs origin plays important role in gonadotropin-mediated meiotic resumption from diplotene arrest in follicular oocyte of mammals.


Asunto(s)
Células de la Granulosa/enzimología , Meiosis/fisiología , Proteínas Quinasas Activadas por Mitógenos/metabolismo , Oocitos/fisiología , Animales , Femenino , Gonadotropinas Hipofisarias/fisiología , Nucleótidos Cíclicos/metabolismo
3.
Biomed Pharmacother ; 103: 46-49, 2018 Jul.
Artículo en Inglés | MEDLINE | ID: mdl-29635127

RESUMEN

Stress is deeply rooted in the society and women are frequently exposed to psychological, physical and physiological stressors. Psychological stress disturbs reproductive health by inducing generation of reactive oxygen species (ROS) and thereby oxidative stress (OS). The increased OS may affect physiology of ovary, oocyte quality and cause female reproductive health disorders. To overcome stress-mediated reproductive health disorders in women, shatavari (Asparagus racemosus) is frequently recommended in Ayurvedic system of medicine. Although shatavari is one of the major health tonics and most popular rasayana drugs to treat reproductive ailments of women, underlying mechanism of shatavari action at the level of ovary remains poorly understood. Based on the existing studies, we propose that shatavari may improve female reproductive health complications including hormonal imbalance, polycystic ovarian syndrome (PCOS), follicular growth and development, oocyte quality and infertility possibly by reducing OS level and increasing antioxidants level in the body. Further studies are required to elucidate the mechanism of shatavari actions at the level of ovary and oocyte that directly impacts the reproductive health of women.


Asunto(s)
Asparagus/química , Enfermedades de los Genitales Femeninos/etiología , Salud Reproductiva , Estrés Psicológico/complicaciones , Femenino , Hormonas/metabolismo , Humanos , Infertilidad Femenina/etiología
SELECCIÓN DE REFERENCIAS
DETALLE DE LA BÚSQUEDA