Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 3 de 3
Filtrar
Más filtros

Bases de datos
Tipo del documento
País de afiliación
Intervalo de año de publicación
1.
Proc Natl Acad Sci U S A ; 117(22): 12192-12200, 2020 06 02.
Artículo en Inglés | MEDLINE | ID: mdl-32393624

RESUMEN

Late-spring frosts (LSFs) affect the performance of plants and animals across the world's temperate and boreal zones, but despite their ecological and economic impact on agriculture and forestry, the geographic distribution and evolutionary impact of these frost events are poorly understood. Here, we analyze LSFs between 1959 and 2017 and the resistance strategies of Northern Hemisphere woody species to infer trees' adaptations for minimizing frost damage to their leaves and to forecast forest vulnerability under the ongoing changes in frost frequencies. Trait values on leaf-out and leaf-freezing resistance come from up to 1,500 temperate and boreal woody species cultivated in common gardens. We find that areas in which LSFs are common, such as eastern North America, harbor tree species with cautious (late-leafing) leaf-out strategies. Areas in which LSFs used to be unlikely, such as broad-leaved forests and shrublands in Europe and Asia, instead harbor opportunistic tree species (quickly reacting to warming air temperatures). LSFs in the latter regions are currently increasing, and given species' innate resistance strategies, we estimate that ∼35% of the European and ∼26% of the Asian temperate forest area, but only ∼10% of the North American, will experience increasing late-frost damage in the future. Our findings reveal region-specific changes in the spring-frost risk that can inform decision-making in land management, forestry, agriculture, and insurance policy.


Asunto(s)
Cambio Climático , Frío , Hojas de la Planta/crecimiento & desarrollo , Estaciones del Año , Árboles/crecimiento & desarrollo , Asia , Europa (Continente) , Bosques , América del Norte , Fenotipo , Análisis Espacio-Temporal , Temperatura
2.
Vegetos ; 34(3): 630-637, 2021.
Artículo en Inglés | MEDLINE | ID: mdl-34092942

RESUMEN

The present paper highlights the importance of lac cultivation through Butea monosperma. We have modelled the suitable habitat of major lac host B. monosperma using MAXENT for the current and future climatic scenarios (RCPs 2.6, 4.5, 6.0 and 8.5). The study suggested the dominance of suitable habitats of B. monosperma in central-eastern to eastern and southern parts of the country. Temperature seasonality (Bio_4) was the most significant bioclimatic variable in regulating the distribution of B. monosperma followed by elevation and annual precipitation (Bio_13). The projection for the year 2050 suggested the habitat shift towards the eastern and southern parts. The study indicated the major habitat of B. monosperma continued to exist in the Chotanagpur plateau in eastern India. The model predicted approximately a 9-13% decrease in the overall potential habitat of B. monosperma by 2050, and the distribution of species would be nearly extinct from the northern and western parts. Presently, only the 5% lac host trees are being utilised for lac cultivation, and the study suggested that conservation and promotion of B. monosperma on projected suitable habitats and even by utilising 25% of resources, the lac production may jump manifold catering to global demand, rural economy and employment and shall contribute towards 'Self Reliant India'.

3.
Sci Total Environ ; 732: 139297, 2020 Aug 25.
Artículo en Inglés | MEDLINE | ID: mdl-32408041

RESUMEN

The Severe Acute Respiratory Syndrome-Coronavirus Disease 2019 (COVID-19) pandemic caused by a novel coronavirus known as SARS-CoV-2 has caused tremendous suffering and huge economic losses. We hypothesized that extreme measures of partial-to-total shutdown might have influenced the quality of the global environment because of decreased emissions of atmospheric pollutants. We tested this hypothesis using satellite imagery, climatic datasets (temperature, and absolute humidity), and COVID-19 cases available in the public domain. While the majority of the cases were recorded from Western countries, where mortality rates were strongly positively correlated with age, the number of cases in tropical regions was relatively lower than European and North American regions, possibly attributed to faster human-to-human transmission. There was a substantial reduction in the level of nitrogen dioxide (NO2: 0.00002 mol m-2), a low reduction in CO (<0.03 mol m-2), and a low-to-moderate reduction in Aerosol Optical Depth (AOD: ~0.1-0.2) in the major hotspots of COVID-19 outbreak during February-March 2020, which may be attributed to the mass lockdowns. Our study projects an increasing coverage of high COVID-19 hazard at absolute humidity levels ranging from 4 to 9 g m-3 across a large part of the globe during April-July 2020 due to a high prospective meteorological suitability for COVID-19 spread. Our findings suggest that there is ample scope for restoring the global environment from the ill-effects of anthropogenic activities through temporary shutdown measures.


Asunto(s)
Betacoronavirus , Infecciones por Coronavirus , Pandemias , Neumonía Viral , COVID-19 , Humanos , Estudios Prospectivos , SARS-CoV-2 , Plata
SELECCIÓN DE REFERENCIAS
DETALLE DE LA BÚSQUEDA