Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 5 de 5
Filtrar
1.
Immunity ; 55(4): 606-622.e6, 2022 04 12.
Artículo en Inglés | MEDLINE | ID: mdl-35358427

RESUMEN

Lymph node (LN) stromal cells play a crucial role in LN development and in supporting adaptive immune responses. However, their origin, differentiation pathways, and transcriptional programs are still elusive. Here, we used lineage-tracing approaches and single-cell transcriptome analyses to determine origin, transcriptional profile, and composition of LN stromal and endothelial progenitors. Our results showed that all major stromal cell subsets and a large proportion of blood endothelial cells originate from embryonic Hoxb6+ progenitors of the lateral plate mesoderm (LPM), whereas lymphatic endothelial cells arise from Pax3+ progenitors of the paraxial mesoderm (PXM). Single-cell RNA sequencing revealed the existence of different Cd34+ and Cxcl13+ stromal cell subsets and showed that embryonic LNs contain proliferating progenitors possibly representing the amplifying populations for terminally differentiated cells. Taken together, our work identifies the earliest embryonic sources of LN stromal and endothelial cells and demonstrates that stromal diversity begins already during LN development.


Asunto(s)
Células Endoteliales , Células Endoteliales/metabolismo , Ganglios Linfáticos , Análisis de Secuencia de ARN , Análisis de la Célula Individual , Células del Estroma , Factores de Transcripción/metabolismo
2.
Nucleic Acids Res ; 50(18): 10643-10664, 2022 10 14.
Artículo en Inglés | MEDLINE | ID: mdl-36156153

RESUMEN

Asymmetric subcellular mRNA localization allows spatial regulation of gene expression and functional compartmentalization. In neurons, localization of specific mRNAs to neurites is essential for cellular functioning. However, it is largely unknown how transcript sorting works in a sequence-specific manner. Here, we combined subcellular transcriptomics and massively parallel reporter assays and tested ∼50 000 sequences for their ability to localize to neurites. Mapping the localization potential of >300 genes revealed two ways neurite targeting can be achieved: focused localization motifs and broadly encoded localization potential. We characterized the interplay between RNA stability and localization and identified motifs able to bias localization towards neurite or soma as well as the trans-acting factors required for their action. Based on our data, we devised machine learning models that were able to predict the localization behavior of novel reporter sequences. Testing this predictor on native mRNA sequencing data showed good agreement between predicted and observed localization potential, suggesting that the rules uncovered by our MPRA also apply to the localization of native full-length transcripts.


Asunto(s)
Neuronas , Estabilidad del ARN , Neuritas/metabolismo , Neuronas/metabolismo , ARN Mensajero/genética , ARN Mensajero/metabolismo , Transactivadores/metabolismo
3.
Int J Mol Sci ; 20(8)2019 Apr 19.
Artículo en Inglés | MEDLINE | ID: mdl-31010208

RESUMEN

Circular RNAs (circRNAs) constitute a recently re-discovered class of non-coding RNAs functioning as sponges for miRNAs and proteins, affecting RNA splicing and regulating transcription. CircRNAs are generated by "back-splicing", which is the linking covalently of 3'- and 5'-ends of exons. Thus, circRNA levels might be deregulated in conditions associated with altered RNA-splicing. Significantly, growing evidence indicates their role in human diseases. Specifically, myotonic dystrophy type 1 (DM1) is a multisystemic disorder caused by expanded CTG repeats in the DMPK gene which results in abnormal mRNA-splicing. In this investigation, circRNAs expressed in DM1 skeletal muscles were identified by analyzing RNA-sequencing data-sets followed by qPCR validation. In muscle biopsies, out of nine tested, four transcripts showed an increased circular fraction: CDYL, HIPK3, RTN4_03, and ZNF609. Their circular fraction values correlated with skeletal muscle strength and with splicing biomarkers of disease severity, and displayed higher values in more severely affected patients. Moreover, Receiver-Operating-Characteristics curves of these four circRNAs discriminated DM1 patients from controls. The identified circRNAs were also detectable in peripheral-blood-mononuclear-cells (PBMCs) and the plasma of DM1 patients, but they were not regulated significantly. Finally, increased circular fractions of RTN4_03 and ZNF609 were also observed in differentiated myogenic cell lines derived from DM1 patients. In conclusion, this pilot study identified circRNA dysregulation in DM1 patients.


Asunto(s)
Regulación de la Expresión Génica , Distrofia Miotónica/genética , ARN/genética , Adulto , Empalme Alternativo/genética , Estudios de Casos y Controles , Línea Celular , Femenino , Humanos , Masculino , Músculo Esquelético/metabolismo , Músculo Esquelético/patología , Distrofia Miotónica/sangre , Reacción en Cadena de la Polimerasa , ARN/sangre , ARN Circular , Reproducibilidad de los Resultados
4.
Sci Rep ; 13(1): 807, 2023 01 16.
Artículo en Inglés | MEDLINE | ID: mdl-36646776

RESUMEN

Autism spectrum disorder (ASD) is a neurodevelopmental condition with onset in early childhood, still diagnosed only through clinical observation due to the lack of laboratory biomarkers. Early detection strategies would be especially useful in screening high-risk newborn siblings of children already diagnosed with ASD. We performed RNA sequencing on peripheral blood, comparing 27 pairs of ASD children vs their sex- and age-matched unaffected siblings. Differential gene expression profiling, performed applying an unpaired model found two immune genes, EGR1 and IGKV3D-15, significantly upregulated in ASD patients (both p adj = 0.037). Weighted gene correlation network analysis identified 18 co-expressed modules. One of these modules was downregulated among autistic individuals (p = 0.035) and a ROC curve using its eigengene values yielded an AUC of 0.62. Genes in this module are primarily involved in transcriptional control and its hub gene, RACK1, encodes for a signaling protein critical for neurodevelopment and innate immunity, whose expression is influenced by various hormones and known "endocrine disruptors". These results indicate that transcriptomic biomarkers can contribute to the sensitivity of an intra-familial multimarker panel for ASD and provide further evidence that neurodevelopment, innate immunity and transcriptional regulation are key to ASD pathogenesis.


Asunto(s)
Trastorno del Espectro Autista , Trastorno Autístico , Niño , Recién Nacido , Humanos , Preescolar , Trastorno del Espectro Autista/diagnóstico , Hermanos , Trastorno Autístico/genética , Biomarcadores , Análisis de Secuencia de ARN
5.
EURASIP J Bioinform Syst Biol ; 2016(1): 3, 2016 Dec.
Artículo en Inglés | MEDLINE | ID: mdl-26834783

RESUMEN

The toxicity and efficacy of more than 30 anticancer agents present very high variations, depending on the dosing time. Therefore, the biologists studying the circadian rhythm require a very precise method for estimating the periodic component (PC) vector of chronobiological signals. Moreover, in recent developments, not only the dominant period or the PC vector present a crucial interest but also their stability or variability. In cancer treatment experiments, the recorded signals corresponding to different phases of treatment are short, from 7 days for the synchronization segment to 2 or 3 days for the after-treatment segment. When studying the stability of the dominant period, we have to consider very short length signals relative to the prior knowledge of the dominant period, placed in the circadian domain. The classical approaches, based on Fourier transform (FT) methods are inefficient (i.e., lack of precision) considering the particularities of the data (i.e., the short length). Another particularity of the signals considered in such experiments is the level of noise: such signals are very noisy and establishing the periodic components that are associated with the biological phenomena and distinguishing them from the ones associated with the noise are difficult tasks. In this paper, we propose a new method for the estimation of the PC vector of biomedical signals, using the biological prior informations and considering a model that accounts for the noise. The experiments developed in cancer treatment context are recording signals expressing a limited number of periods. This is a prior information that can be translated as the sparsity of the PC vector. The proposed method considers the PC vector estimation as an Inverse Problem (IP) using the general Bayesian inference in order to infer the unknown of our model, i.e. the PC vector but also the hyperparameters (i.e the variances). The sparsity prior information is modeled using a sparsity enforcing prior law. In this paper, we propose a Student's t distribution, viewed as the marginal distribution of a bivariate normal-inverse gamma distribution. We build a general infinite Gaussian scale mixture (IGSM) hierarchical model where we assign prior distributions also for the hyperparameters. The expression of the joint posterior law of the unknown PC vector and hyperparameters is obtained via Bayes rule, and then, the unknowns are estimated via joint maximum a posteriori (JMAP) or posterior mean (PM). For the PM estimator, the expression of the posterior distribution is approximated by a separable one, via variational Bayesian approximation (VBA), using the Kullback-Leibler (KL) divergence. For the PM estimation, two possibilities are considered: an approximation with a partially separable distribution and an approximation with a fully separable one. Both resulting algorithms corresponding to the PM estimation and the one corresponding to the JMAP estimation are iterative algorithms. The algorithms are presented in detail and are compared with the ones corresponding to the Gaussian model. We examine the convergency of the algorithms and give simulation results to compare their performances. Finally, we show simulation results on synthetic and real data in cancer treatment applications. The real data considered in this paper examines the rest-activity patterns of KI/KI Per2::luc mouse, aged 10 weeks, singly housed in RealTime Biolumicorder (RT-BIO).

SELECCIÓN DE REFERENCIAS
DETALLE DE LA BÚSQUEDA