Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 10 de 10
Filtrar
1.
Mol Pharm ; 21(2): 822-830, 2024 Feb 05.
Artículo en Inglés | MEDLINE | ID: mdl-38173242

RESUMEN

Titanium-45 (45Ti) is a radionuclide with excellent physical characteristics for use in positron emission tomography (PET) imaging, including a moderate half-life (3.08 h), decay by positron emission (85%), and a low mean positron energy of 0.439 MeV. However, challenges associated with titanium chemistry have led to the underdevelopment of this radionuclide for incorporation into radiopharmaceuticals. Expanding on our recent studies, which showed promising results for the complexation of 45Ti with the tris hydroxypyridinone (THPMe) chelator, the current work aimed to optimize the chemistry and imaging attributes of [45Ti]Ti-THP-PSMA as a new PET radiopharmaceutical. Methods. Radiolabeling of THP-PSMA was optimized with [45Ti]Ti-citrate at varying pHs and masses of the precursor. The stability of the radiolabeled complex was assessed in mouse serum for up to 6 h. The affinity of [45Ti]Ti-THP-PSMA for prostate-specific membrane antigen (PSMA) was assessed using LNCaP (PSMA +) and PC3 (PSMA -) cell lines. In vivo imaging and biodistribution analysis were performed in tumor-bearing xenograft mouse models to confirm the specificity of the tumor uptake. Results. > 95% of radiolabeling was achieved with a high specific activity of 5.6 MBq/nmol under mild conditions. In vitro cell binding studies showed significant binding of the radiolabeled complex with the PSMA-expressing LNCaP cell line (11.9 ± 1.5%/mg protein-bound activity) compared to that with the nonexpressing PC3 cells (1.9 ± 0.4%/mg protein-bound activity). In vivo imaging and biodistribution studies confirmed specific uptake in LNCaP tumors (1.6 ± 0.27% ID/g) compared to that in PC3 tumors (0.39 ± 0.2% ID/g). Conclusion. This study showed a simple one-step radiolabeling method for 45Ti with THP-PSMA under mild conditions (pH 8 and 37 °C). In vitro cell studies showed promise, but in vivo tumor xenograft studies indicated low tumor uptake. Overall, this study shows the need for more chelators for 45Ti for the development of a PET radiopharmaceutical for cancer imaging.


Asunto(s)
Tomografía Computarizada por Tomografía de Emisión de Positrones , Neoplasias de la Próstata , Masculino , Humanos , Animales , Ratones , Tomografía Computarizada por Tomografía de Emisión de Positrones/métodos , Radiofármacos , Neoplasias de la Próstata/metabolismo , Radioquímica , Distribución Tisular , Titanio , Glutamato Carboxipeptidasa II/metabolismo , Antígenos de Superficie/metabolismo , Tomografía de Emisión de Positrones , Radioisótopos , Quelantes , Línea Celular Tumoral
2.
Inorg Chem ; 62(50): 20567-20581, 2023 Dec 18.
Artículo en Inglés | MEDLINE | ID: mdl-36724083

RESUMEN

Three isotopes of scandium─43Sc, 44Sc, and 47Sc─have attracted increasing attention as potential candidates for use in imaging and therapy, respectively, as well as for possible theranostic use as an elementally matched pair. Here, we present the octadentate chelator 3,4,3-(LI-1,2-HOPO) (or HOPO), an effective chelator for hard cations, as a potential ligand for use in radioscandium constructs with simple radiolabeling under mild conditions. HOPO forms a 1:1 Sc-HOPO complex that was fully characterized, both experimentally and theoretically. [47Sc]Sc-HOPO exhibited good stability in chemical and biological challenges over 7 days. In healthy mice, [43,47Sc]Sc-HOPO cleared the body rapidly with no signs of demetalation. HOPO is a strong candidate for use in radioscandium-based radiopharmaceuticals.


Asunto(s)
Piridonas , Radiofármacos , Animales , Ratones , Radiofármacos/química , Piridonas/química , Quelantes/química , Tomografía de Emisión de Positrones/métodos , Ligandos
3.
Angew Chem Int Ed Engl ; 61(22): e202201211, 2022 05 23.
Artículo en Inglés | MEDLINE | ID: mdl-35263017

RESUMEN

Despite its prevalence in the environment, the chemistry of the Ti4+ ion has long been relegated to organic solutions or hydrolyzed TiO2 polymorphs. A knowledge gap in stabilizing molecular Ti4+ species in aqueous environments has prevented the use of this ion for various applications such as radioimaging, design of water-compatible metal-organic frameworks (MOFs), and aqueous-phase catalysis applications. Herein, we show a thorough thermodynamic screening of bidentate chelators with Ti4+ in aqueous solution, as well as computational and structural analyses of key compounds. In addition, the hexadentate analogues of catechol (benzene-1,2-diol) and deferiprone (3-hydroxy-1,2-dimethyl-4(1H)-pyridone), TREN-CAM and THPMe respectively, were assessed for chelation of the 45 Ti isotope (t1/2 =3.08 h, ß+ =85 %, Eß+ =439 keV) towards positron emission tomography (PET) imaging applications. Both were found to have excellent capacity for kit-formulation, and [45 Ti]Ti-TREN-CAM was found to have remarkable stability in vivo.


Asunto(s)
Compuestos Organometálicos , Titanio , Catálisis , Quelantes , Hidrólisis , Compuestos Organometálicos/química , Titanio/química , Agua/química
4.
Pharmaceuticals (Basel) ; 17(4)2024 Apr 09.
Artículo en Inglés | MEDLINE | ID: mdl-38675439

RESUMEN

Molecular imaging is an important part of modern medicine which enables the non-invasive identification and characterization of diseases. With the advancement of radiochemistry and scanner technology, nuclear medicine is providing insight into efficient treatment options for individual patients. Titanium-45 (45Ti) is a lesser-explored radionuclide that is garnering increasing interest for the development of positron emission tomography (PET) radiopharmaceuticals. This review discusses aspects of this radionuclide including production, purification, radiochemistry development, and molecular imaging studies.

5.
Appl Radiat Isot ; 211: 111382, 2024 Jun 02.
Artículo en Inglés | MEDLINE | ID: mdl-38843622

RESUMEN

Beryllium-7 (7Be) was created by proton irradiation of natural (natB) and enriched (10B) boron targets. The targets were dissolved in nitric acid, and the 7Be was separated from the bulk boron target material by cation-exchange chromatography. An average recovery of (99.4 ± 3.7)% was obtained for 6 separations. The purified 7Be sample was placed into a batch-mode ion source to create a 7Be beam that was delivered at an average rate of 5 × 105 pps to end users at the National Superconducting Cyclotron Laboratory.

6.
J Med Chem ; 2024 Jun 27.
Artículo en Inglés | MEDLINE | ID: mdl-38935616

RESUMEN

We report the [natMn/52Mn]Mn(II) complexes of the macrocyclic chelators PYAN [3,6,10,13-tetraaza-1,8(2,6)-dipyridinacyclotetradecaphane] and CHXPYAN [(41R,42R,101R,102R)-3,5,9,11-tetraaza-1,7(2,6)-dipyridina-4,10(1,2)-dicyclohexanacyclododecaphane]. The X-ray crystal structures of Mn-PYAN and Mn-CHXPYAN evidence distorted octahedral geometries through coordination of the nitrogen atoms of the macrocycles. Cyclic voltammetry studies evidence reversible processes due to the Mn(II)/Mn(III) pair, indicating that the complexes are resistant to oxidation. CHXPYAN forms a more thermodynamically stable and kinetically inert Mn(II) complex than PYAN. Radiochemical studies with the radioactive isotope manganese-52 (52Mn, t1/2 = 5.6 days) evidenced better radiochemical yields for CHXPYAN than for PYAN. Both [52Mn]Mn(II) complexes remained stable in mouse and human serum, so in vivo stability studies were carried out. Positron emission tomography/computed tomography scans and biodistribution assays indicated that [52Mn]Mn-PYAN has a distribution pattern similar to that of [52Mn]MnCl2, showing persistent radioactivity accumulation in the kidneys. Conversely, [52Mn]Mn-CHXPYAN remained stable in vivo, clearing quickly from the liver and kidneys.

7.
Nucl Med Biol ; 128-129: 108874, 2024.
Artículo en Inglés | MEDLINE | ID: mdl-38154167

RESUMEN

INTRODUCTION: Due to its decay and chemical properties, interest in manganese-52 has increased for development of long-lived PET radiopharmaceuticals. Its long half-life of 5.6 days, low average positron energy (242 keV), and sufficient positron decay branching ratio make it suitable for radiolabeling macromolecules for investigating slow biological processes. This work aims to establish suitable chelators for manganese-52 that can be radiolabeled at mild conditions through the evaluation of commercially available chelators. METHODS: Manganese-52 was produced through the nuclear reaction NatCr(p,n)52Mn by irradiation of natural chromium targets on a TR24 cyclotron followed by purification through ion exchange chromatography. The radiolabeling efficiencies of chelators: DOTA, DiAmsar, TETA, DO3A, NOTA, 4'-Formylbenzo-15-crown-5, Oxo-DO3A, and DFO, were assessed by investigating the impact of pH, buffer type, and temperature. In vitro stability of [52Mn]Mn(DO3A)-, [52Mn]Mn(Oxo-DO3A)-, and [52Mn]Mn(DOTA)2- were evaluated in mouse serum. The radiocomplexes were also evaluated in vivo in mice. Crystals of [Mn(Oxo-DO3A)]- were synthesized by reacting Oxo-DO3A with MnCl2 and characterized by single crystal X-ray diffraction. RESULTS: Yields of 185 ± 19 MBq (5.0 ± 0.5 mCi) (n = 4) of manganese-52 were produced at the end of a 4 h, 15 µA, bombardment with 12.5 MeV protons. NOTA, DO3A, DOTA, and Oxo-DO3A chelators were readily radiolabeled with >96 % radiochemical purity at all conditions. Manganese radiocomplexes of Oxo-DO3A, DOTA, and DO3A remained stable in vitro up to 5 days and exhibited different biodistribution profiles compared to [52Mn]MnCl2. The solid-state structure of Mn-Oxo-DO3A complex was determined by single-crystal X-ray diffraction. CONCLUSIONS: DO3A and Oxo-DO3A are suitable chelators for manganese-52 which are readily radiolabeled at mild conditions with high molar activity, and demonstrate both in vitro and in vivo stability.


Asunto(s)
Manganeso , Tomografía de Emisión de Positrones , Radioisótopos , Ratones , Animales , Distribución Tisular , Tomografía de Emisión de Positrones/métodos , Radiofármacos/química , Quelantes/química
8.
Nucl Med Biol ; 128-129: 108872, 2024.
Artículo en Inglés | MEDLINE | ID: mdl-38262310

RESUMEN

INTRODUCTION: Chelators play a crucial role in the development of metal-based radiopharmaceuticals, and with the continued interest in 68Ga and increasing availability of new radiometals such as 43Sc/47Sc and 45Ti, there is a growing demand for tailored chelators that can form stable complexes with these metals. This work reports the synthesis and characterization of a hexadentate tris-1,2-hydroxypyridonone chelator HOPO-O6-C4 and its in vitro and in vivo evaluation with the above mentioned radiometals. METHODS: To investigate the affinity of HOPO-O6-C4, macroscopic studies were performed with Sc3+, and Ga3+ followed by DFT structural optimization of the Sc3+, Ga3+ and Ti4+ complexes. Further tracer studies with 43Sc (and 47Sc), 45Ti, and 68Ga were performed to determine the potential for positron emission tomography (PET) imaging with these complexes. In vitro stability studies followed by in vivo imaging and biodistribution studies were performed to understand the kinetic stability of the resultant radiometal-complexes of HOPO-O6-C4. RESULTS: Promising radiolabeling results with HOPO-O6-C4 were obtained with 43Sc, 47Sc, 45Ti, and 68Ga radionuclides; rapid radiolabeling was observed at 37 °C and pH 7 in under 30-min. Apparent molar activity measurements were performed for radiolabeling of HOPO-O6-C4 with 43Sc (4.9 ± 0.26 GBq/µmol), 47Sc (1.58 ± 0.01 GBq/µmol), 45Ti (11.5 ± 1.6 GBq/µmol) and 68Ga (5.74 ± 0.7 GBq/µmol), respectively. Preclinical in vivo imaging studies resulted in promising results with [68Ga]Ga-HOPO-O6-C4 indicating a rapid clearance through hepatic excretion route and no decomplexation whereas [43Sc]Sc-HOPO-O6-C4, [47Sc]Sc-HOPO-O6-C4 and [45Ti]Ti-HOPO-O6-C4 showed modest and significant evidence of decomplexation, respectively. CONCLUSIONS: The tris-1,2-HOPO chelator HOPO-O6-C4 is a promising scaffold for elaboration into a 68Ga- based radiopharmaceutical.


Asunto(s)
Radioisótopos de Galio , Piridonas , Radiofármacos , Radiofármacos/química , Radioisótopos de Galio/química , Distribución Tisular , Titanio , Tomografía de Emisión de Positrones , Quelantes/química
9.
J Nucl Med ; 64(11): 1791-1797, 2023 11.
Artículo en Inglés | MEDLINE | ID: mdl-37652545

RESUMEN

203Pb is a surrogate imaging match for 212Pb. This elementally matched pair is emerging as a suitable pair for imaging and targeted radionuclide therapy in cancer care. Because of the half-life (51.9 h) and low-energy γ-rays emitted, 203Pb is suitable for the development of diagnostic radiopharmaceuticals. The aim of this work was to optimize the production and separation of high-specific-activity 203Pb using electroplated thallium targets. We further investigated the radiochemistry optimization using a suitable chelator, tetraazacyclododecane-1,4,7-triacetic acid (DO3A), and targeting vector, VMT-α-NET (lead-specific chelator conjugated to tyr3-octreotide via a polyethylene glycol linker). Methods: Targets were prepared by electroplating of natural or enriched (205Tl) thallium metal. Scanning electron microscopy was performed to determine the structure and elemental composition of electroplated targets. Targets were irradiated with 24-MeV protons with varying current and beam time to investigate target durability. 203Pb was purified from the thallium target material using an extraction resin (lead resin) column followed by a second column using a weak cation-exchange resin to elute the lead isotope as [203Pb]PbCl2 Inductively coupled plasma mass spectrometry studies were used to further characterize the separation for trace metal contaminants. Radiolabeling efficiency was also investigated for DO3A chelator and VMT-α-NET (a peptide-based targeting conjugate). Results: Electroplated targets were prepared at a high plating density of 76-114 mg/cm2 using a plating time of 5 h. A reproducible separation method was established with a final elution in HCl (400 µL, 1 M) suitable for radiolabeling. Greater than 90% recovery yields were achieved, with an average specific activity of 37.7 ± 5.4 GBq/µmol (1.1 ± 0.1 Ci/µmol). Conclusion: An efficient electroplating method was developed to prepare thallium targets suitable for cyclotron irradiation. A simple and fast separation method was developed for routine 203Pb production with high recovery yields and purity.


Asunto(s)
Plomo , Talio , Marcaje Isotópico , Radiofármacos , Quelantes/química
10.
Biosens Bioelectron ; 141: 111158, 2019 Sep 15.
Artículo en Inglés | MEDLINE | ID: mdl-31323605

RESUMEN

Carbon quantum dots (CQDs) have emerged as a potential material in the diverse fields of biomedical applications due to their numerous advantageous properties including fluorescence, water solubility, biocompatibility, low toxicity, small size and ease of modification, inexpensive scale-up production, and versatile conjugation with other nanoparticles. Thus, CQDs became a preferable choice in various biomedical applications such as nanocarriers for drugs, therapeutic genes, photosensitizers, and antibacterial molecules. Further, their potentials have also been verified in multifunctional diagnostic platforms, cellular and bacterial bio-imaging, development of theranostics nanomedicine, etc. This review provides a concise insight into the progress and evolution in the field of CQD research with respect to methods/materials available in bio-imaging, theranostics, cancer/gene therapy, diagnostics, etc. Further, our discussion is extended to explore the role of CQDs in nanomedicine which is considered to be the future of biomedicine. This study will thus help biomedical researchers in tapping the potential of CQDs to overcome various existing technological challenges.


Asunto(s)
Técnicas Biosensibles/métodos , Carbono/uso terapéutico , Nanomedicina/métodos , Puntos Cuánticos/uso terapéutico , Animales , Carbono/química , Sistemas de Liberación de Medicamentos/métodos , Humanos , Nanotecnología/métodos , Imagen Óptica/métodos , Puntos Cuánticos/química
SELECCIÓN DE REFERENCIAS
DETALLE DE LA BÚSQUEDA