Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 12 de 12
Filtrar
Más filtros

Bases de datos
Tipo del documento
Intervalo de año de publicación
1.
Phys Rev Lett ; 119(24): 245701, 2017 Dec 15.
Artículo en Inglés | MEDLINE | ID: mdl-29286747

RESUMEN

Despite the simplicity of its molecular unit, water is a challenging system because of its uniquely rich polymorphism and predicted but yet unconfirmed features. Introducing a novel space of generalized coordinates that capture changes in the topology of the interatomic network, we are able to systematically track transitions among liquid, amorphous, and crystalline forms throughout the whole phase diagram of water, including the nucleation of crystals above and below the melting point. Our approach, based on molecular dynamics and enhanced sampling or free energy calculation techniques, is not specific to water and could be applied to very different structural phase transitions, paving the way towards the prediction of kinetic routes connecting polymorphic structures in a range of materials.

2.
Phys Chem Chem Phys ; 19(3): 1875-1883, 2017 Jan 18.
Artículo en Inglés | MEDLINE | ID: mdl-28009862

RESUMEN

We probe the possible inclusion of salt (NaCl) in the ice VII lattice over the pressure range from 2 to 4 gigapascal. We combine data from neutron diffraction experiments under pressure and from computational structure searches based on density functional theory. We observe that the high density amorphous precursor (NaCl·10.2D2O) crystallises during annealing at high pressure in the vicinity of the phase boundary between pure ices VII and VIII. The structure formed is very similar to that of pure ice VII. Our simulations indicate that substituting water molecules in the ice VII lattice with Na+ and Cl- ions would lead to a significant expansion of the lattice parameter. Since this expansion was not observed in our experiments, the ice crystallised is likely to be pure D2O or contains only a small fraction of the ions from the salt solution.

3.
Phys Chem Chem Phys ; 17(21): 14054-63, 2015 Jun 07.
Artículo en Inglés | MEDLINE | ID: mdl-25955540

RESUMEN

The structure of amorphous NaCl solutions produced by fast quenching is studied as a function of pressure, up to 4 GPa, by combined neutron diffraction experiments and classical molecular dynamics simulations. Similarly to LiCl solutions the system amorphizes at ambient pressure in a dense phase structurally similar to the e-HDA phase in pure water. The measurement of the static structure factor as a function of pressure allowed us to validate a new polarizable force field developed by Tazi et al., 2012, never tested under non-ambient conditions. We infer from simulations that the hydration shells of Na(+) cations form well defined octahedra composed of both H2O molecules and Cl(-) anions at low pressure. These octahedra are gradually broken by the seventh neighbour moving into the shell of first neighbours yielding an irregular geometry. In contrast to LiCl solutions and pure water, the system does not show a polyamorphic transition under pressure. This confirms that the existence of polyamorphism relies on the tetrahedral structure of water molecules, which is broken here.

4.
Phys Rev Lett ; 111(18): 185901, 2013 Nov 01.
Artículo en Inglés | MEDLINE | ID: mdl-24237539

RESUMEN

First measurements of the self-dynamics of liquid water in the GPa range are reported. The GPa range has here become accessible through a new setup for the Paris-Edinburgh press specially conceived for quasielastic neutron scattering studies. A direct measurement of both the translational and rotational diffusion coefficients of water along the 400 K isotherm up to 3 GPa, corresponding to the melting point of ice VII, is provided and compared with molecular dynamics simulations. The translational diffusion is observed to strongly decrease with pressure, though its variation slows down for pressures higher than 1 GPa and decouples from that of the shear viscosity. The rotational diffusion turns out to be insensitive to pressure. Through comparison with structural data and molecular dynamics simulations, we show that this is a consequence of the rigidity of the first neighbors shell and of the invariance of the number of hydrogen bonds of a water molecule under high pressure. These results show the inadequacy of the Stokes-Einstein-Debye equations to predict the self-diffusive behavior of water at high temperature and high pressure, and challenge the usual description of hot dense water behaving as a simple liquid.

5.
Phys Rev Lett ; 108(16): 165702, 2012 Apr 20.
Artículo en Inglés | MEDLINE | ID: mdl-22680735

RESUMEN

We report the experimental discovery of a new phase of ammonia ice, stable at pressures above 57 GPa and temperatures above 700 K. The combination of our experimental results and ab initio molecular dynamics simulations reveal that this new phase is a superionic conductor, characterized by a large proton diffusion coefficient (1.0×10(-4) cm(2)/s at 70 GPa, 850 K). Proton diffusion occurs via a Grotthuss-like mechanism, at a surprisingly lower temperature than in water ice. This may have implications for the onset of superionicity in the molecular ice mixtures present in Jovian planets. Our simulations further suggest that the anisotropic proton hopping along different H bonds in the molecular solid may explain the formation of the recently predicted ionic phase at low temperatures.

6.
Phys Rev Lett ; 106(12): 125701, 2011 Mar 25.
Artículo en Inglés | MEDLINE | ID: mdl-21517327

RESUMEN

We investigated the metastable phase diagram of an ionic salt aqueous solution, LiCl:6D2O, at high pressure and low temperature by neutron diffraction measurements and computer simulations. We show that the presence of salt triggers a stepwise transformation, under annealing at high pressure, to a new very high-density amorphous form. The transition occurs abruptly at 120 K and 2 GPa, is reversible, and is characterized by a sizeable enthalpy release. Simulations suggest that the polyamorphic transition is linked to a local structural reorganization of water molecules around the Li ions.

7.
Nat Commun ; 8(1): 1065, 2017 10 20.
Artículo en Inglés | MEDLINE | ID: mdl-29051485

RESUMEN

Water and ammonia are considered major components of the interiors of the giant icy planets and their satellites, which has motivated their exploration under high P-T conditions. Exotic forms of these pure ices have been revealed at extreme (~megabar) pressures, notably symmetric, ionic, and superionic phases. Here we report on an extensive experimental and computational study of the high-pressure properties of the ammonia monohydrate compound forming from an equimolar mixture of water and ammonia. Our experiments demonstrate that relatively mild pressure conditions (7.4 GPa at 300 K) are sufficient to transform ammonia monohydrate from a prototypical hydrogen-bonded crystal into a form where the standard molecular forms of water and ammonia coexist with their ionic counterparts, hydroxide (OH-) and ammonium [Formula: see text] ions. Using ab initio atomistic simulations, we explain this surprising coexistence of neutral/charged species as resulting from a topological frustration between local homonuclear and long-ranged heteronuclear ionisation mechanisms.

8.
Phys Rev Lett ; 96(6): 067801, 2006 Feb 17.
Artículo en Inglés | MEDLINE | ID: mdl-16606049

RESUMEN

We present a neutron diffraction study of liquid water to 6.5 GPa and 670 K. From the measured structure factors we determine radial and angular distributions. It is shown that with increasing density water approaches a local structure common to a simple liquid while distorting only a little the tetrahedral first-neighbor coordination imposed by hydrogen bonds that remain intact.

9.
Phys Rev Lett ; 94(2): 025506, 2005 Jan 21.
Artículo en Inglés | MEDLINE | ID: mdl-15698193

RESUMEN

We present a neutron diffraction study of the transition between low-density and high-density amorphous ice (LDA and HDA, respectively) under pressure at approximately 0.3 GPa, at 130 K. All the intermediate diffraction patterns can be accurately decomposed into a linear combination of the patterns of pure LDA and HDA. This progressive transformation of one distinct phase to another, with phase coexistence at constant pressure and temperature, gives direct evidence of a classical first-order transition. In situ Raman measurements and visual observation of the reverse transition strongly support these conclusions, which have implications for models of water and the proposed second critical point in the undercooled region of liquid water.

10.
Phys Rev Lett ; 93(22): 225901, 2004 Nov 26.
Artículo en Inglés | MEDLINE | ID: mdl-15601100

RESUMEN

We report measurements of the phonon dispersion of ice Ih under hydrostatic pressure up to 0.5 GPa, at 140 K, using inelastic neutron scattering. They reveal a pronounced softening of various low-energy modes, in particular, those of the transverse acoustic phonon branch in the [100] direction and polarization in the hexagonal plane. We demonstrate with the aid of a lattice dynamical model that these anomalous features in the phonon dispersion are at the origin of the negative thermal expansion (NTE) coefficient in ice below 60 K. Moreover, extrapolation to higher pressures shows that the mode frequencies responsible for the NTE approach zero at approximately 2.5 GPa, which explains the known pressure-induced amorphization (PIA) in ice. These results give the first clear experimental evidence that PIA in ice is due to a lattice instability, i.e., mechanical melting.

11.
Nature ; 399(6731): 46-8, 1999 May 06.
Artículo en Inglés | MEDLINE | ID: mdl-10331387

RESUMEN

Many experiments have been done to determine the relative strengths of different knots, and these show that the break in a knotted rope almost invariably occurs at the point just outside the 'entrance' to the knot. The influence of knots on the properties of polymers has become of great interest, in part because of their effect on mechanical properties. Knot theory applied to the topology of macromolecules indicates that the simple trefoil or 'overhand' knot is likely to be present in any long polymer strand. Fragments of DNA have been observed to contain such knots in experiments and computer simulations. Here we use ab initio computational methods to investigate the effect of a trefoil knot on the breaking strength of a polymer strand. We find that the knot weakens the strand significantly, and that, like a knotted rope, it breaks under tension at the entrance to the knot.


Asunto(s)
Alcanos/química , Polímeros/química , Carbono/química , Simulación por Computador , Modelos Químicos , Estructura Molecular , Relación Estructura-Actividad , Temperatura
12.
Phys Rev Lett ; 91(24): 247001, 2003 Dec 12.
Artículo en Inglés | MEDLINE | ID: mdl-14683147

RESUMEN

We present a joint experimental and theoretical study of the superconductivity in doped silicon clathrates. The critical temperature in Ba(8)@Si-46 is shown to strongly decrease with applied pressure. These results are corroborated by ab initio calculations using MacMillan's formulation of the BCS theory with the electron-phonon coupling constant lambda calculated from perturbative density functional theory. Further, the study of I(8)@Si-46 and of gedanken pure silicon diamond and clathrate phases doped within a rigid-band approach show that the superconductivity is an intrinsic property of the sp(3) silicon network. As a consequence, carbon clathrates are predicted to yield large critical temperatures with an effective electron-phonon interaction much larger than in C60.

SELECCIÓN DE REFERENCIAS
DETALLE DE LA BÚSQUEDA