Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 4 de 4
Filtrar
Más filtros

Bases de datos
Tipo de estudio
País/Región como asunto
Tipo del documento
País de afiliación
Intervalo de año de publicación
1.
New Phytol ; 235(5): 1757-1766, 2022 09.
Artículo en Inglés | MEDLINE | ID: mdl-35835139

RESUMEN

Recent studies have suggested that in certain environments, tree stems emit methane (CH4 ). This study explored the mechanism of CH4 emission from the stem surfaces of Alnus japonica in a riparian wetland. Stem CH4 emission rates and sap flux were monitored year-round, and fine-root anatomy was investigated. CH4 emission rates were estimated using a closed-chamber method. Sap flux was measured using Granier-type thermal dissipation probes. Root anatomy was studied using both optical and cryo-scanning electron microscopy. CH4 emissions during the leafy season exhibited a diurnally changing component superimposed upon an underlying continuum in which the diurnal variation was in phase with sap flux. We propose a model in which stem CH4 emission involves at least two processes: a sap flux-dependent component responsible for the diurnal changes, and a sap flux-independent component responsible for the background continuum. The contribution ratios of the two processes are season-dependent. The background continuum possibly resulted from the diffusive transport of gaseous CH4 from the roots to the upper trunk. Root anatomy analysis indicated that the intercellular space of the cortex and empty xylem cells in fine roots could serve as a passageway for transport of gaseous CH4 .


Asunto(s)
Alnus , Metano , Metano/análisis , Estaciones del Año , Suelo , Árboles , Humedales
2.
Glob Chang Biol ; 24(11): 5123-5136, 2018 11.
Artículo en Inglés | MEDLINE | ID: mdl-30175421

RESUMEN

Data on ecosystem-scale methane (CH4 ) fluxes in tropical peatlands are currently lacking in the global CH4 budget. Although the waterlogged Indonesian peatlands contain the largest share of peat carbon in South-East Asia, ecosystem-scale CH4 budgets have not yet been reported, although these peatlands have the potential to emit CH4 . We observed 1-year variations in the ecosystem-scale CH4 flux in an undrained secondary peat swamp forest in central Kalimantan, Indonesia, using the eddy covariance method. We found that the peat swamp forest switched from being a CH4 sink during the dry season (as low as -8.9 mg C m-2  day-1 ) to a source of CH4 during the wet season (up to 10.7 mg C m-2  day-1 ), and this was dependent on changes in the groundwater level (GWL). The high GWL during the wet season enhanced the anaerobic CH4 production in the surface layer that had more labile organic matter. However, the CH4 emission also increased when the GWL dropped during dry spells in the wet season. The annual CH4 budget in the studied tropical peat swamp forest (0.09-0.17 g C m-2  year-1 ) was much lower than that in northern, temperate, and subtropical wetlands. We found that CH4 fluxes had almost no effect on the global warming gas budget of the peat swamp forest, and values were only a few percent less than the CO2 fluxes at the same site. In addition, we conducted anaerobic soil incubation experiments to examine the effect of land-use change on CH4 production. The results indicated much higher CH4 production potential in undrained forest soil than in drained or drained and burned ex-forest soils. However, although CH4 production decreased in drained soils relative to undrained soils, conserving pristine peat swamp forests with high GWLs is important to suppress global warming because CO2 emissions increase in drained peatlands.


Asunto(s)
Metano/análisis , Suelo , Humedales , Dióxido de Carbono/análisis , Ecosistema , Bosques , Calentamiento Global , Agua Subterránea , Indonesia , Estaciones del Año
3.
Tree Physiol ; 44(5)2024 May 05.
Artículo en Inglés | MEDLINE | ID: mdl-38598321

RESUMEN

This study aimed to reveal the mechanism and significance of wet canopy photosynthesis during and after rainfall in temperate coniferous ecosystems by evaluating the influence of abaxial leaf interception on wet canopy photosynthesis. We used the eddy covariance method in conjunction with an enclosed-path gas analyser to conduct continuous ecosystem CO2 flux observations in a Japanese cypress forest within the temperate Asian monsoon area over 3 years. The observation shows that wet-canopy CO2 uptake predominantly occurred during the post-rainfall canopy-wet period rather than the during-rainfall period. Then, the measured canopy-wet net ecosystem exchange was compared with the soil-vegetation-atmosphere transfer multilayer model simulations under different parameter settings of the abaxial (lower) leaf surface wet area ratio. The multilayer model predicted net ecosystem exchange most accurately when it assumed the wet area ratio of the abaxial surface was 50% both during and after rainfall. For the wet canopy both during and after rainfall, the model overestimated CO2 uptake when it assumed no abaxial interception in the simulation, but underestimated CO2 uptake when it assumed that the entire abaxial leaf surface was wet. These results suggest that the abaxial surface of the Japanese cypress leaf is only partly wet to maintain stomatal openness and a low level of photosynthesis. These results allow for an evaluation of the effect of rainfall on forest carbon circulation under a changing climate, facilitating an improvement of ecosystem carbon exchange models.


Asunto(s)
Cupressus , Bosques , Fotosíntesis , Hojas de la Planta , Lluvia , Fotosíntesis/fisiología , Cupressus/fisiología , Hojas de la Planta/fisiología , Árboles/fisiología , Dióxido de Carbono/metabolismo , Japón , Modelos Biológicos
4.
PLoS One ; 13(2): e0192622, 2018.
Artículo en Inglés | MEDLINE | ID: mdl-29432465

RESUMEN

Soil respiration (Rs) plays a key role in the carbon balance of forest ecosystems. There is growing evidence that Rs is strongly correlated with canopy photosynthesis; however, how Rs is linked to aboveground attributes at various phenological stages, on the seasonal and diurnal scale, remains unclear. Using an automated closed dynamic chamber system, we assessed the seasonal and diurnal patterns of Rs in a temperate evergreen coniferous forest from 2005 to 2010. High-frequency Rs rates followed seasonal soil temperature patterns but the relationship showed strong hysteresis. Predictions of Rs based on a temperature-response model underestimated the observed values from June to July and overestimated those from August to September and from January to April. The observed Rs was higher in early summer than in late summer and autumn despite similar soil temperatures. At a diurnal scale, the Rs pattern showed a hysteresis loop with the soil temperature trend during the seasons of high biological activity (June to October). In July and August, Rs declined after the morning peak from 0800 to 1400 h, although soil temperatures continued to increase. During that period, figure-eight-shaped diurnal Rs patterns were observed, suggesting that a midday decline in root physiological activity may have occurred in early summer. In September and October, Rs was higher in the morning than in the night despite consistently high soil temperatures. We have characterised the magnitude and pattern of seasonal and diurnal Rs in an evergreen forest. We conclude that the temporal variability of Rs at high resolution is more related to seasons across the temperature dependence.


Asunto(s)
Automatización , Estaciones del Año , Suelo , Tracheophyta , Temperatura
SELECCIÓN DE REFERENCIAS
DETALLE DE LA BÚSQUEDA