Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 2 de 2
Filtrar
Más filtros

Bases de datos
Tipo del documento
Asunto de la revista
País de afiliación
Intervalo de año de publicación
1.
PLoS One ; 17(11): e0276748, 2022.
Artículo en Inglés | MEDLINE | ID: mdl-36383516

RESUMEN

The present study assessed heat-escape/cold-seeking behavior during thermoregulation in mice and the influence of TRPV1 channels. Mice received subcutaneous injection of capsaicin (50 mg/kg; CAP group) for desensitization of TRPV1 channels or vehicle (control [CON] group). In Experiment 1, heat-escape/cold-seeking behavior was assessed using a newly developed system comprising five temperature-controlled boards placed in a cross-shape. Each mouse completed three 90-min trials. In the trials, the four boards, including the center board, were set at either 36˚C, 38˚C, or 40˚C, while one corner board was set at 32˚C, which was rotated every 5 min. In Experiment 2, mice were exposed to an ambient temperature of 37˚C for 30 min. cFos expression in the preoptic area of the hypothalamus (POA) was assessed. In Experiment 1, the CON group stayed on the 32˚C board for the longest duration relative to that on other boards, and intra-abdominal temperature (Tabd) was maintained. In the CAP group, no preference for the 32˚C board was observed, and Tabd increased. In Experiment 2, cFos expression in the POA decreased in the CAP group. Capsaicin-induced desensitization of TRPV1 channels suppressed heat-escape/cold-seeking behavior in mice during heat exposure, resulting in hyperthermia. In conclusion, our findings suggest that heat sensation from the body surface may be a key inducer of thermoregulatory behaviors in mice.


Asunto(s)
Capsaicina , Calor , Ratones , Animales , Capsaicina/farmacología , Canales Catiónicos TRPV/genética , Canales Catiónicos TRPV/metabolismo , Regulación de la Temperatura Corporal/fisiología , Frío
2.
Anal Chim Acta ; 1200: 339435, 2022 Apr 01.
Artículo en Inglés | MEDLINE | ID: mdl-35256135

RESUMEN

The high-efficiency separation and extraction of short fragments of cell-free DNA (cfDNA) remain challenging due to their low abundance and short lengths. This study presents a method for separating short cfDNA fragments, with lengths ranging from about 100 to 200 base pairs, from liquid human plasma samples into separable and extractable bands as solid agarose gel slabs. To achieve this, a novel millimeter-scale fluidic device is used for sample handling, transient isotachophoresis, and extraction. The device features open-to-atmosphere liquid chambers that define and manually actuated (i.e., movable) agarose-made gate valve structures. The agarose gates then define discrete zones for buffers, sample injection, DNA pre-concentration via isotachophoresis, size-based gel separation, and DNA-band extraction. As a demonstration of its efficacy, the device is applied to the enrichment and purification of M. tuberculosis genomic DNA fragments spiked in human plasma samples. This purified cfDNA is analyzed using the quantitative polymerase chain reaction (qPCR) of the IS6110 repetitive sequence in the M. tuberculosis genome. The data from this study demonstrates that high sensitivity can be achieved in cfDNA detection, as shown by the comparison with a typical solid-phase extraction method and buffer spiked with cfDNA. Evidence is presented that suggests plasma peptides generated by treatment of the sample with proteinase K acts as endogenous spacer molecules, which improve the resolution and purification of DNA relative to the marker dye and other contaminants that decrease the signal level in qPCR.


Asunto(s)
Ácidos Nucleicos Libres de Células , ADN , Isotacoforesis , Mycobacterium tuberculosis , Ácidos Nucleicos Libres de Células/análisis , ADN/análisis , Humanos , Isotacoforesis/métodos , Mycobacterium tuberculosis/química , Mycobacterium tuberculosis/genética
SELECCIÓN DE REFERENCIAS
DETALLE DE LA BÚSQUEDA