Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 20 de 31
Filtrar
1.
Nature ; 577(7791): 519-525, 2020 01.
Artículo en Inglés | MEDLINE | ID: mdl-31942073

RESUMEN

The origin of eukaryotes remains unclear1-4. Current data suggest that eukaryotes may have emerged from an archaeal lineage known as 'Asgard' archaea5,6. Despite the eukaryote-like genomic features that are found in these archaea, the evolutionary transition from archaea to eukaryotes remains unclear, owing to the lack of cultured representatives and corresponding physiological insights. Here we report the decade-long isolation of an Asgard archaeon related to Lokiarchaeota from deep marine sediment. The archaeon-'Candidatus Prometheoarchaeum syntrophicum' strain MK-D1-is an anaerobic, extremely slow-growing, small coccus (around 550 nm in diameter) that degrades amino acids through syntrophy. Although eukaryote-like intracellular complexes have been proposed for Asgard archaea6, the isolate has no visible organelle-like structure. Instead, Ca. P. syntrophicum is morphologically complex and has unique protrusions that are long and often branching. On the basis of the available data obtained from cultivation and genomics, and reasoned interpretations of the existing literature, we propose a hypothetical model for eukaryogenesis, termed the entangle-engulf-endogenize (also known as E3) model.


Asunto(s)
Archaea/clasificación , Archaea/aislamiento & purificación , Células Eucariotas/clasificación , Modelos Biológicos , Células Procariotas/clasificación , Aminoácidos/metabolismo , Archaea/metabolismo , Archaea/ultraestructura , Células Eucariotas/citología , Células Eucariotas/metabolismo , Células Eucariotas/ultraestructura , Evolución Molecular , Genoma Arqueal/genética , Sedimentos Geológicos/microbiología , Lípidos/análisis , Lípidos/química , Filogenia , Células Procariotas/citología , Células Procariotas/metabolismo , Células Procariotas/ultraestructura , Simbiosis
2.
Artículo en Inglés | MEDLINE | ID: mdl-38967634

RESUMEN

An anaerobic, mesophilic, syntrophic, archaeon strain MK-D1T, was isolated as a pure co-culture with Methanogenium sp. strain MK-MG from deep-sea methane seep sediment. This organism is, to our knowledge, the first cultured representative of 'Asgard' archaea, an archaeal group closely related to eukaryotes. Here, we describe the detailed physiology and phylogeny of MK-D1T and propose Promethearchaeum syntrophicum gen. nov., sp. nov. to accommodate this strain. Cells were non-motile, small cocci, approximately 300-750 nm in diameter and produced membrane vesicles, chains of blebs and membrane-based protrusions. MK-D1T grew at 4-30 °C with optimum growth at 20 °C. The strain grew chemoorganotrophically with amino acids, peptides and yeast extract with obligate dependence on syntrophy with H2-/formate-utilizing organisms. MK-D1T showed the fastest growth and highest maximum cell yield when grown with yeast extract as the substrate: approximately 3 months to full growth, reaching up to 6.7×106 16S rRNA gene copies ml-1. MK-D1T had a circular 4.32 Mb chromosome with a DNA G+C content of 31.1 mol%. The results of phylogenetic analyses of the 16S rRNA gene and conserved marker proteins indicated that the strain is affiliated with 'Asgard' archaea and more specifically DHVC1/DSAG/MBG-B and 'Lokiarchaeota'/'Lokiarchaeia'. On the basis of the results of 16S rRNA gene sequence analysis, the most closely related isolated relatives were Infirmifilum lucidum 3507LTT (76.09 %) and Methanothermobacter tenebrarum RMAST (77.45 %) and the closest relative in enrichment culture was Candidatus 'Lokiarchaeum ossiferum' (95.39 %). The type strain of the type species is MK-D1T (JCM 39240T and JAMSTEC no. 115508). We propose the associated family, order, class, phylum, and kingdom as Promethearchaeaceae fam. nov., Promethearchaeales ord. nov., Promethearchaeia class. nov., Promethearchaeota phyl. nov., and Promethearchaeati regn. nov., respectively. These are in accordance with ICNP Rules 8 and 22 for nomenclature, Rule 30(3)(b) for validation and maintenance of the type strain, and Rule 31a for description as a member of an unambiguous syntrophic association.


Asunto(s)
Composición de Base , ADN de Archaea , Filogenia , ARN Ribosómico 16S , Análisis de Secuencia de ADN , ARN Ribosómico 16S/genética , ADN de Archaea/genética , Sedimentos Geológicos/microbiología , Anaerobiosis , Agua de Mar/microbiología , Vitamina K 2/análogos & derivados
3.
Environ Microbiol ; 24(12): 6144-6163, 2022 12.
Artículo en Inglés | MEDLINE | ID: mdl-36284406

RESUMEN

In deep-sea hydrothermal vent environments, metal-enriched fluids and sediments abound, making these habitats ideal to study metal resistance in prokaryotes. In this investigation, we employed transcriptomics and shotgun proteomics with scanning transmission electron microscopy and energy-dispersive x-ray spectroscopy (STEM-EDX) to better understand mechanisms of tolerance for cadmium (Cd) and copper (Cu) at stress-inducing concentrations in Nitratiruptor sp. SB155-2 (phylum Campylobacterota). Transcriptomic profiles were remarkably different in the presence of these two metals, displaying 385 (19%) and 629 (31%) differentially transcribed genes (DTG) in the presence of Cd(II) and Cu(II), respectively, while only 7% of differentially transcribed (DT) genes were shared, with genes for non-specific metal transporters and genes involved in oxidative stress-response predominating. Transcriptomic and proteomic analyses confirmed that metal-specific DT pathways under Cu(II) stress, including those involving sulfur, cysteine, and methionine, are likely required for high-affinity efflux systems, while flagella formation and chemotaxis were over-represented under Cd(II) stress. Consistent with these differences, STEM-EDX analysis revealed that polyphosphate-like granules (pPLG), the formation of CdS particles, and the periplasmic space are crucial for Cd(II) sequestration. Overall, this study provides new insights regarding metal-specific adaptations of Campylobacterota to deep-sea hydrothermal vent environments.


Asunto(s)
Epsilonproteobacteria , Respiraderos Hidrotermales , Cadmio , Cobre , Proteómica , Metales
4.
Int J Syst Evol Microbiol ; 69(4): 1225-1230, 2019 Apr.
Artículo en Inglés | MEDLINE | ID: mdl-30843780

RESUMEN

A novel hydrogenotrophic methanogen, strain HHBT, was isolated from a deep-sea hydrothermal vent chimney sample collected from Beebe Vent Field at the Mid-Cayman Spreading Center, Caribbean Sea. The cells were non-motile regular to irregular cocci possessing several flagella. The novel isolate grew at 60-80 °C, pH 5.0-7.4 and with 1-4 % of NaCl (w/v). The isolate utilized H2/CO2 as the only substrates for growth and methane production. The results of phylogenetic analyses of both 16S rRNA and mcrA gene sequences and comparative genome analysis indicated that HHBT represented a member of the order Methanococcales, and was closely related to the members of the genera Methanothermococcus and Methanotorris. The most closely related species were Methanothermococcus okinawensis IH1T and Methanotorris igneus Kol 5T in comparison of 16S rRNA gene sequences (each with 93 % identity), and Methanotorris formicicus Mc-S-70T in the case of deduced amino acid sequence similarity of mcrA genes (92 % similarity). The ANI and AAI values between HHBT and the members of the genera Methanothermococcus and Methanotorris were 69-72 % and 66-70 %, respectively. Although many of the morphological and physiological characteristics were quite similar between HHBT and the species of the genera Methanothermococcus and Methanotorris, they were distinguishable by the differences in susceptibility to antibiotics, formate utilization, growth temperature and NaCl ranges. On the basis of these phenotypic, phylogenetic and genomic properties, we propose that strain HHBT represents a novel species, of a novel genus, Methanofervidicoccus abyssi gen. nov., sp. nov. The type strain is HHBT (=JCM 32161T=DSM 105918T).


Asunto(s)
Respiraderos Hidrotermales/microbiología , Methanococcaceae/clasificación , Filogenia , Región del Caribe , ADN de Archaea/genética , Genes Arqueales , Methanococcaceae/aislamiento & purificación , ARN Ribosómico 16S/genética , Agua de Mar , Análisis de Secuencia de ADN , Temperatura
5.
Int J Syst Evol Microbiol ; 69(4): 1185-1194, 2019 Apr.
Artículo en Inglés | MEDLINE | ID: mdl-30775966

RESUMEN

A novel slow-growing, facultatively anaerobic, filamentous bacterium, strain MO-CFX2T, was isolated from a methanogenic microbial community in a continuous-flow bioreactor that was established from subseafloor sediment collected off the Shimokita Peninsula of Japan. Cells were multicellular filamentous, non-motile and Gram-stain-negative. The filaments were generally more than 20 µm (up to approximately 200 µm) long and 0.5-0.6 µm wide. Cells possessed pili-like structures on the cell surface and a multilayer structure in the cytoplasm. Growth of the strain was observed at 20-37 °C (optimum, 30 °C), pH 5.5-8.0 (pH 6.5-7.0), and 0-30 g l-1 NaCl (5 g l-1 NaCl). Under optimum growth conditions, doubling time and maximum cell density were estimated to be approximately 19 days and ~105 cells ml-1, respectively. Strain MO-CFX2T grew chemoorganotrophically on a limited range of organic substrates in anaerobic conditions. The major cellular fatty acids were saturated C16 : 0 (47.9 %) and C18 : 0 (36.9 %), and unsaturated C18 : 1ω9c (6.0 %) and C16 : 1ω7 (5.1 %). The G+C content of genomic DNA was 63.2 mol%. 16S rRNA gene-based phylogenetic analysis showed that strain MO-CFX2T shares a notably low sequence identity with its closest relatives, which were Thermanaerothrix daxensis GNS-1T and Thermomarinilinea lacunifontana SW7T (both 85.8 % sequence identity). Based on these phenotypic and genomic properties, we propose the name Aggregatilinea lenta gen. nov., sp. nov. for strain MO-CFX2T (=KCTC 15625T, =JCM 32065T). In addition, we also propose the associated family and order as Aggregatilineaceae fam. nov. and Aggregatilineales ord. nov., respectively.


Asunto(s)
Reactores Biológicos/microbiología , Chloroflexi/clasificación , Sedimentos Geológicos/microbiología , Filogenia , Agua de Mar/microbiología , Técnicas de Tipificación Bacteriana , Composición de Base , Chloroflexi/aislamiento & purificación , ADN Bacteriano/genética , Ácidos Grasos/química , Japón , ARN Ribosómico 16S/genética , Análisis de Secuencia de ADN
6.
Appl Environ Microbiol ; 82(15): 4492-504, 2016 08 01.
Artículo en Inglés | MEDLINE | ID: mdl-27208107

RESUMEN

UNLABELLED: Ammonia oxidation regulates the balance of reduced and oxidized nitrogen pools in nature. Although ammonia-oxidizing archaea have been recently recognized to often outnumber ammonia-oxidizing bacteria in various environments, the contribution of ammonia-oxidizing archaea is still uncertain due to difficulties in the in situ quantification of ammonia oxidation activity. Nitrogen and oxygen isotope ratios of nitrite (δ(15)NNO2- and δ(18)ONO2-, respectively) are geochemical tracers for evaluating the sources and the in situ rate of nitrite turnover determined from the activities of nitrification and denitrification; however, the isotope ratios of nitrite from archaeal ammonia oxidation have been characterized only for a few marine species. We first report the isotope effects of ammonia oxidation at 70°C by thermophilic Thaumarchaeota populations composed almost entirely of "Candidatus Nitrosocaldus." The nitrogen isotope effect of ammonia oxidation varied with ambient pH (25‰ to 32‰) and strongly suggests the oxidation of ammonia, not ammonium. The δ(18)O value of nitrite produced from ammonia oxidation varied with the δ(18)O value of water in the medium but was lower than the isotopic equilibrium value in water. Because experiments have shown that the half-life of abiotic oxygen isotope exchange between nitrite and water is longer than 33 h at 70°C and pH ≥6.6, the rate of ammonia oxidation by thermophilic Thaumarchaeota could be estimated using δ(18)ONO2- in geothermal environments, where the biological nitrite turnover is likely faster than 33 h. This study extended the range of application of nitrite isotopes as a geochemical clock of the ammonia oxidation activity to high-temperature environments. IMPORTANCE: Because ammonia oxidation is generally the rate-limiting step in nitrification that regulates the balance of reduced and oxidized nitrogen pools in nature, it is important to understand the biological and environmental factors underlying the regulation of the rate of ammonia oxidation. The discovery of ammonia-oxidizing archaea (AOA) in marine and terrestrial environments has transformed the concept that ammonia oxidation is operated only by bacterial species, suggesting that AOA play a significant role in the global nitrogen cycle. However, the archaeal contribution to ammonia oxidation in the global biosphere is not yet completely understood. This study successfully identified key factors controlling nitrogen and oxygen isotopic ratios of nitrite produced from thermophilic Thaumarchaeota and elucidated the applicability and its limit of nitrite isotopes as a geochemical clock of ammonia oxidation rate in nature. Oxygen isotope analysis in this study also provided new biochemical information on archaeal ammonia oxidation.


Asunto(s)
Compuestos de Amonio/metabolismo , Archaea/metabolismo , Manantiales de Aguas Termales/microbiología , Ríos/microbiología , Desnitrificación , Nitrificación , Nitritos/metabolismo , Isótopos de Nitrógeno/metabolismo , Oxidación-Reducción , Isótopos de Oxígeno/metabolismo , Ríos/química
7.
Int J Syst Evol Microbiol ; 66(3): 1293-1300, 2016 Mar.
Artículo en Inglés | MEDLINE | ID: mdl-26739306

RESUMEN

A novel, anaerobic bacterium, strain MO-SEDIT, was isolated from a methanogenic microbial community, which was originally obtained from marine subsurface sediments collected from off the Shimokita Peninsula of Japan. Cells were Gram-stain-negative, non-motile, non-spore-forming rods, 0.4-1.4 µm long by 0.4-0.6 µm wide. The cells also formed long filaments of up to about 11 µm. The strain grew on amino acids (i.e. valine, leucine, isoleucine, methionine, glycine, phenylalanine, tryptophan, lysine and arginine), pyruvate and melezitose in the presence of yeast extract. Growth was observed at 4-37 °C (optimally at 30 °C), at pH 6.0 and 8.5 (optimally at 7.0-7.5) and in 0-60 g l- 1 NaCl (optimally 20 g NaCl l- 1). The G+C content of the DNA was 32.0 mol%. The polar lipids of strain MO-SEDIT were phosphatidylglycerol, phosphatidyl lipids and unknown lipids. The major cellular fatty acids (>10 % of the total) were C14 : 0, C16 : 1ω9 and C16 : 0 dimethyl aldehyde. Comparative sequence analysis of the 16S rRNA gene showed that strain MO-SEDIT was affiliated with the genus Sedimentibacter within the phylum Firmicutes. It was related most closely to the type strain of Sedimentibacter saalensis (94 % sequence similarity). Based on the phenotypic and genetic characteristics, strain MO-SEDIT is considered to represent a novel species of the genus Sedimentibacter, for which the name Sedimentibacter acidaminivorans sp. nov. is proposed. The type strain is MO-SEDIT ( = JCM 17293T = DSM 24004T).

8.
Int J Syst Evol Microbiol ; 64(Pt 8): 2798-2804, 2014 Aug.
Artículo en Inglés | MEDLINE | ID: mdl-24860115

RESUMEN

An obligately anaerobic, psychrophilic spirochaete, strain MO-SPC1(T), was isolated from a methanogenic microbial community grown in a continuous-flow bioreactor. Originally, this community was obtained from subseafloor sediments off the Shimokita Peninsula of Japan in the north-western Pacific Ocean. The cells were motile, Gram-stain-negative, helical, 0.25-0.55×3.6-15 µm, with a wavelength of approximately 0.5-0.6 µm. Strain MO-SPC1(T) grew at 0-18 °C (optimally at 15 °C), at pH 6.0-7.5 (optimally at pH 6.8-7.0) and in 20-70 g NaCl l(-1) (optimally at 30-40 NaCl l(-1)). The strain grew chemo-organotrophically with mono-, di- and polysaccharides. The major end products of glucose fermentation were acetate, ethanol, hydrogen and carbon dioxide. The abundant polar lipids of strain MO-SPC1(T) were diphosphatidylglycerol, phosphatidylglycerol, unknown phospholipids and an unknown lipid. The major cellular fatty acids (>5% of the total) were C(14 : 0), C(16 : 0), iso-C(13 : 0), iso-C(14 : 0), iso-C(15 : 0), anteiso-C(13 : 0) and anteiso-C(15 : 0). To the best of our knowledge, this is the first report of the fatty acids iso-C(13 : 0) and anteiso-C(13 : 0) from a species of the genus Spirochaeta. Isoprenoid quinones were not found. The G+C content of the genomic DNA was 39.8 mol%. 16S rRNA gene sequence-based phylogenetic analysis showed that strain MO-SPC1(T) was affiliated with the genus Spirochaeta, and its closest relatives were Spirochaeta isovalerica MA-2(T) (95.6% sequence identity) and Spirochaeta litoralis R1(T) (89.4%). Based on its phenotypic characteristics and phylogenetic traits, strain MO-SPC1(T) is placed in a separate taxon at the level of a novel species within the genus Spirochaeta, for which the name Spirochaeta psychrophila sp. nov. is proposed, reflecting its true psychrophilic physiology. The type strain is MO-SPC1(T) ( = JCM 17280(T) = DSM 23951(T)). To our knowledge, this is the first report of an isolate of the phylum Spirochaetes from a deep-sea sedimentary environment, and of an obligately psychrophilic nature.


Asunto(s)
Reactores Biológicos/microbiología , Sedimentos Geológicos/microbiología , Spirochaeta/clasificación , Técnicas de Tipificación Bacteriana , Composición de Base , ADN Bacteriano/genética , Ácidos Grasos/química , Japón , Datos de Secuencia Molecular , Fosfolípidos/química , Filogenia , ARN Ribosómico 16S/genética , Agua de Mar/microbiología , Análisis de Secuencia de ADN , Spirochaeta/genética , Spirochaeta/aislamiento & purificación
9.
Int J Syst Evol Microbiol ; 64(Pt 3): 812-818, 2014 Mar.
Artículo en Inglés | MEDLINE | ID: mdl-24215824

RESUMEN

A novel, anaerobic filamentous bacterium, strain MO-CFX1(T), was isolated from a methanogenic community, which was originally established from subseafloor sediments collected from off the Shimokita Peninsula, Japan. Cells were non-spore-forming, non-motile, Gram-stain-negative and filamentous. The filaments were longer than 10 µm and 130-150 nm in width. Growth of the strain was observed at 10-37 °C (optimum 25-30 °C), at pH 5.5-8.5 (optimum pH 7.0) and in 0-50 g NaCl l(-1) (optimum 15 g NaCl l(-1)). The strain was able to grow with a number of carbohydrates in the presence of yeast extract. The major cellular fatty acids were monounsaturated C18 : 1ω9, C16 : 1ω7 and saturated C18 : 0 and C16 : 0. The intact polar lipids of the strain were dominated by diacylglyceride and sphingolipid core lipid structures with monoglycosidic, mixed phosphomonoglycosidic and fatty-acid-modified monoglycosidic polar head groups. The G+C content of the genomic DNA was 52.4 mol%. Based on the comparative 16S rRNA gene sequence analysis, strain MO-CFX1(T) was affiliated with the class Anaerolineae within the phylum Chloroflexi and was most closely related to Leptolinea tardivitalis YMTK-2(T) (sequence identity of 91.0 %). Based on phenotypic and genetic properties of the novel isolate, we propose a novel species representing a new genus Pelolinea submarina gen. nov., sp. nov., for strain MO-CFX1(T) ( = JCM 17238(T), = KCTC 5975(T)). This is the first formal description, to our knowledge, of an isolate of the phylum Chloroflexi from the deep-sea sedimentary environment.


Asunto(s)
Chloroflexi/clasificación , Sedimentos Geológicos/microbiología , Filogenia , Agua de Mar/microbiología , Técnicas de Tipificación Bacteriana , Composición de Base , Chloroflexi/genética , Chloroflexi/aislamiento & purificación , ADN Bacteriano/genética , Ácidos Grasos/química , Japón , Datos de Secuencia Molecular , ARN Ribosómico 16S/genética , Análisis de Secuencia de ADN , Microbiología del Agua
10.
Int J Syst Evol Microbiol ; 64(Pt 12): 4147-4154, 2014 Dec.
Artículo en Inglés | MEDLINE | ID: mdl-25249566

RESUMEN

An anaerobic, psychrophilic bacterium, strain MO-SPC2(T), was isolated from a methanogenic microbial community in a continuous-flow bioreactor that was established from subseafloor sediments collected from off the Shimokita Peninsula of Japan in the north-western Pacific Ocean. Cells were pleomorphic: spherical, annular, curved rod, helical and coccoid cell morphologies were observed. Motility only occurred in helical cells. Strain MO-SPC2(T) grew at 0-17 °C (optimally at 9 °C), at pH 6.0-8.0 (optimally at pH 6.8-7.2) and in 20-40 g NaCl l(-1) (optimally at 20-30 NaCl l(-1)). The strain grew chemo-organotrophically with mono-, di- and polysaccharides. The major end products of glucose fermentation were acetate, ethanol, hydrogen and carbon dioxide. The abundant polar lipids of strain MO-SPC2(T) were phosphatidylglycolipids, phospholipids and glycolipids. The major cellular fatty acids were C14 : 0, C16 : 0 and C16 : 1ω9. Isoprenoid quinones were not detected. The G+C content of the DNA was 32.3 mol%. 16S rRNA gene-based phylogenetic analysis showed that strain MO-SPC2(T) was affiliated with the genus Sphaerochaeta within the phylum Spirochaetes, and its closest relatives were Sphaerochaeta pleomorpha Grapes(T) (88.4 % sequence identity), Sphaerochaeta globosa Buddy(T) (86.7 %) and Sphaerochaeta coccoides SPN1(T) (85.4 %). Based on phenotypic characteristics and phylogenetic traits, strain MO-SPC2(T) is considered to represent a novel species of the genus Sphaerochaeta, for which the name Sphaerochaeta multiformis sp. nov. is proposed. The type strain is MO-SPC2(T) ( = JCM 17281(T) = DSM 23952(T)). An emended description of the genus Sphaerochaeta is also proposed.


Asunto(s)
Sedimentos Geológicos/microbiología , Filogenia , Spirochaetaceae/clasificación , Técnicas de Tipificación Bacteriana , Composición de Base , ADN Bacteriano/genética , Ácidos Grasos/química , Japón , Datos de Secuencia Molecular , Océano Pacífico , ARN Ribosómico 16S/genética , Agua de Mar/microbiología , Análisis de Secuencia de ADN , Spirochaetaceae/genética , Spirochaetaceae/aislamiento & purificación
11.
Microbes Environ ; 39(5)2024.
Artículo en Inglés | MEDLINE | ID: mdl-38839370

RESUMEN

Microbiologically influenced corrosion refers to the corrosion of metal materials caused or promoted by microorganisms. Although some novel iron-corrosive microorganisms have been discovered in various manmade and natural freshwater and seawater environments, microbiologically influenced corrosion in the deep sea has not been investigated in detail. In the present study, we collected slime-like precipitates composed of corrosion products and microbial communities from a geochemical reactor set on an artificial hydrothermal vent for 14.5 months, and conducted culture-dependent and -independent microbial community ana-lyses with corrosive activity measurements. After enrichment cultivation at 37, 50, and 70°C with zero-valent iron particles, some of the microbial consortia showed accelerated iron dissolution, which was approximately 10- to 50-fold higher than that of the abiotic control. In a comparative ana-lysis based on the corrosion acceleration ratio and amplicon sequencing of the 16S rRNA gene, three types of corrosion were estimated: the methanogen-induced type, methanogen-sulfate-reducing bacteria cooperative type, and sulfate-reducing Firmicutes-induced type. The methanogen-induced and methanogen-sulfate-reducing bacteria cooperative types were observed at 50°C, while the sulfate-reducing Firmicutes-induced type was noted at 37°C. The present results suggest the microbial components associated with microbiologically influenced corrosion in deep-sea hydrothermal systems, providing important insights for the development of future deep-sea resources with metal infrastructures.


Asunto(s)
Bacterias , Respiraderos Hidrotermales , Hierro , Consorcios Microbianos , ARN Ribosómico 16S , Agua de Mar , Corrosión , Hierro/metabolismo , Hierro/química , Agua de Mar/microbiología , Agua de Mar/química , ARN Ribosómico 16S/genética , Bacterias/clasificación , Bacterias/genética , Bacterias/metabolismo , Bacterias/aislamiento & purificación , Respiraderos Hidrotermales/microbiología , Filogenia
12.
ISME Commun ; 4(1): ycad006, 2024 Jan.
Artículo en Inglés | MEDLINE | ID: mdl-38282645

RESUMEN

Microfluidic capillary electrophoresis-mass spectrometry (CE-MS) is a rapid and highly accurate method to determine isotopomer patterns in isotopically labeled compounds. Here, we developed a novel method for tracer-based metabolomics using CE-MS for underivatized proteinogenic amino acids. The method consisting of a ZipChip CE system and a high-resolution Orbitrap Fusion Tribrid mass spectrometer allows us to obtain highly accurate data from 1 µl of 100 nmol/l amino acids comparable to a mere 1 [Formula: see text] 104-105 prokaryotic cells. To validate the capability of the CE-MS method, we analyzed 16 protein-derived amino acids from a methanogenic archaeon Methanothermobacter thermautotrophicus as a model organism, and the mass spectra showed sharp peaks with low mass errors and background noise. Tracer-based metabolome analysis was then performed to identify the central carbon metabolism in M. thermautotrophicus using 13C-labeled substrates. The mass isotopomer distributions of serine, aspartate, and glutamate revealed the occurrence of both the Wood-Ljungdahl pathway and an incomplete reductive tricarboxylic acid cycle for carbon fixation. In addition, biosynthesis pathways of 15 amino acids were constructed based on the mass isotopomer distributions of the detected protein-derived amino acids, genomic information, and public databases. Among them, the presence of alternative enzymes of alanine dehydrogenase, ornithine cyclodeaminase, and homoserine kinase was suggested in the biosynthesis pathways of alanine, proline, and threonine, respectively. To our knowledge, the novel 13C tracer-based metabolomics using CE-MS can be considered the most efficient method to identify central carbon metabolism and amino acid biosynthesis pathways and is applicable to any kind of isolated microbe.

13.
Microbes Environ ; 38(4)2023.
Artículo en Inglés | MEDLINE | ID: mdl-37853632

RESUMEN

Infrared spectroscopy is used for the chemical characterization of prokaryotes. However, its application has been limited to cell aggregates and lipid extracts because of the relatively low spatial resolution of diffraction. We herein report optical photothermal infrared (O-PTIR) spectroscopy of prokaryotes for a domain-level diagnosis at the single-cell level. The technique provided infrared spectra of individual bacterial as well as archaeal cells, and the resulting aliphatic CH3/CH2 intensity ratios showed domain-specific signatures, which may reflect distinctive cellular lipid compositions; however, there was interference by other cellular components. These results suggest the potential of O-PTIR for a domain-level diagnosis of single prokaryotic cells in natural environments.


Asunto(s)
Lípidos , Células Procariotas , Espectrofotometría Infrarroja/métodos , Lípidos/química
14.
Microbes Environ ; 38(2)2023.
Artículo en Inglés | MEDLINE | ID: mdl-37331792

RESUMEN

Post-mega-earthquake geochemical and microbiological properties in subseafloor sediments of the Japan Trench accretionary wedge were investigated using core samples from Hole C0019E, which was drilled down to 851| |m below seafloor (mbsf) at a water depth of 6,890 m. Methane was abundant throughout accretionary prism sediments; however, its concentration decreased close to the plate boundary decollement. Methane isotope systematics indicated a biogenic origin. The content of mole-cular hydrogen (H2) was low throughout core samples, but markedly increased at specific depths that were close to potential faults predicted by logging-while-drilling ana-lyses. Based on isotopic systematics, H2 appeared to have been abundantly produced via a low-temperature interaction between pore water and the fresh surface of crushed rock induced by earthquakes. Subseafloor microbial cell density remained constant at approximately 105| |cells| |mL-1. Amplicon sequences revealed that predominant members at the phylum level were common throughout the units tested, which also included members frequently found in anoxic subseafloor sediments. Metabolic potential assays using radioactive isotopes as tracers revealed homoacetogenic activity in H2-enriched core samples collected near the fault. Furthermore, homoacetogenic bacteria, including Acetobacterium carbinolicum, were isolated from similar samples. Therefore, post-earthquake subseafloor microbial communities in the Japan Trench accretionary prism appear to be episodically dominated by homoacetogenic populations and potentially function due to the earthquake-induced low-temperature generation of H2. These post-earthquake microbial communities may eventually return to the steady-state communities dominated by oligotrophic heterotrophs and hydrogenotrophic and methylotrophic methanogens that are dependent on refractory organic matter in the sediment.


Asunto(s)
Terremotos , Expediciones , Sedimentos Geológicos/microbiología , Japón , Metano/metabolismo , Agua
15.
Int J Syst Evol Microbiol ; 62(Pt 6): 1389-1395, 2012 Jun.
Artículo en Inglés | MEDLINE | ID: mdl-21841010

RESUMEN

A novel mesophilic, hydrogenotrophic methanogen, designated strain TNR(T), was isolated from an anaerobic, propionate-degradation enrichment culture that was originally established from a rice field soil sample from Taiwan. Cells were non-motile rods, 2.0-6.5 µm long by 0.3 µm wide. Filamentous (up to about 100 µm) and coccoid (about 1 µm in diameter) cells were also observed in cultures in the late exponential phase of growth. Strain TNR(T) grew at 20-40 °C (optimally at 37 °C), at pH 6.5-7.4 (optimally at pH 7.0) and in the presence of 0-25 g NaCl l(-1) (optimally at 0 g NaCl l(-1)). The strain utilized H(2)/CO(2) and formate for growth and produced methane. The G+C content of the genomic DNA was 56.4 mol%. Based on sequences of both the 16S rRNA gene and the methanogen-specific marker gene mcrA, strain TNR(T) was related most closely to Methanolinea tarda NOBI-1(T); levels of sequence similarities were 94.8 and 86.4 %, respectively. The 16S rRNA gene sequence similarity indicates that strain TNR(T) and M. tarda NOBI-1(T) represent different species within the same genus. This is supported by shared phenotypic properties, including substrate usage and cell morphology, and differences in growth temperature. Based on these genetic and phenotypic properties, strain TNR(T) is considered to represent a novel species of the genus Methanolinea, for which the name Methanolinea mesophila sp. nov. is proposed; the type strain is TNR(T) ( = NBRC 105659(T) = DSM 23604(T)). In addition, we also suggest family status for the E1/E2 group within the order Methanomicrobiales, for which the name Methanoregulaceae fam. nov. is proposed; the type genus of family is Methanoregula.


Asunto(s)
Hidrógeno/metabolismo , Metano/metabolismo , Methanomicrobiales/clasificación , Methanomicrobiales/aislamiento & purificación , Microbiología del Suelo , Composición de Base , ADN de Archaea/genética , ADN Ribosómico/genética , Methanomicrobiales/genética , Methanomicrobiales/metabolismo , Datos de Secuencia Molecular , Oryza/crecimiento & desarrollo , Filogenia , ARN Ribosómico 16S/genética , Cloruro de Sodio/metabolismo , Taiwán
16.
Nat Protoc ; 17(12): 2784-2814, 2022 12.
Artículo en Inglés | MEDLINE | ID: mdl-36104596

RESUMEN

In microbiology, cultivation is a central approach for uncovering novel physiology, ecology, and evolution of microorganisms, but conventional methods have left many microorganisms found in nature uncultured. To overcome the limitations of traditional methods and culture indigenous microorganisms, we applied a two-stage approach: enrichment/activation of indigenous organisms by using a continuous-flow down-flow hanging sponge bioreactor and subsequent selective batch cultivation. Here, we provide a protocol for this bioreactor-mediated technique using activation of deep marine sediment microorganisms and downstream isolation of a syntrophic co-culture containing an archaeon closely related to the eukaryote ancestor (Candidatus Promethearchaeum syntrophicum strain MK-D1) as an example. Both stages can easily be tailored to target other environments and organisms by modifying the inoculum, feed solution/gases, attachment material and/or cultivation media. We anaerobically incubate polyurethane sponges inoculated with deep-sea methane seep sediment in a reactor at 10 °C and feed anaerobic artificial seawater medium and methane. Once phylogenetically diverse and metabolically active microorganisms are adapted to synthetic conditions in the reactor, we transition to growing community samples in glass tubes with the above medium, simple substrates and selective compounds (e.g., antibiotics). To accommodate for the slow growth anticipated for target organisms, primary cultures can be incubated for ≥6-12 months and analyzed for community composition even when no cell turbidity is observed. One casamino acid- and antibiotic-amended culture prepared in this way led to the enrichment of uncultured archaea. Through successive transfer in vitro combined with molecular growth monitoring, we successfully obtained the target archaeon with its partner methanogen as a pure syntrophic co-culture.


Asunto(s)
Archaea , Reactores Biológicos , Reactores Biológicos/microbiología , Sedimentos Geológicos , Metano , Agua de Mar/microbiología , Medios de Cultivo , Filogenia , ARN Ribosómico 16S
17.
Int J Syst Evol Microbiol ; 61(Pt 1): 53-59, 2011 Jan.
Artículo en Inglés | MEDLINE | ID: mdl-19667393

RESUMEN

A novel methane-producing archaeon, strain SMSP(T), was isolated from an anaerobic, propionate-degrading enrichment culture that was originally obtained from granular sludge in a mesophilic upflow anaerobic sludge blanket (UASB) reactor used to treat a beer brewery effluent. Cells were non-motile, blunt-ended, straight rods, 1.0-2.6 µm long by 0.5 µm wide; cells were sometimes up to 7 µm long. Asymmetrical cell division was observed in rod-shaped cells. Coccoid cells (0.5-1.0 µm in diameter) were also observed in mid- to late-exponential phase cultures. Growth was observed between 10 and 40 °C (optimum, 30-33 °C) and pH 7.0 and 7.6 (optimum, pH 7.4). The G+C content of the genomic DNA was 56.2 mol%. The strain utilized formate and hydrogen for growth and methane production. Based on comparative sequence analyses of the 16S rRNA and mcrA (encoding the alpha subunit of methyl-coenzyme M reductase, a key enzyme in the methane-producing pathway) genes, strain SMSP(T) was affiliated with group E1/E2 within the order Methanomicrobiales. The closest relative based on both 16S rRNA and mcrA gene sequences was Methanoregula boonei 6A8(T) (96.3 % 16S rRNA gene sequence similarity, 85.4 % deduced McrA amino acid sequence similarity). The percentage of 16S rRNA gene sequence similarity indicates that strain SMSP(T) and Methanoregula boonei 6A8(T) represent different species within the same genus. This is supported by our findings of shared phenotypic properties, including cell morphology and growth temperature range, and phenotypic differences in substrate usage and pH range. Based on these genetic and phenotypic properties, we propose that strain SMSP(T) represents a novel species of the genus Methanoregula, for which we propose the name Methanoregula formicica sp. nov., with the type strain SMSP(T) (=NBRC 105244(T) =DSM 22288(T)).


Asunto(s)
Metano/metabolismo , Methanomicrobiales/clasificación , Methanomicrobiales/aislamiento & purificación , Aguas del Alcantarillado/microbiología , Anaerobiosis , Proteínas Arqueales/genética , Composición de Base , Análisis por Conglomerados , ADN de Archaea/química , ADN de Archaea/genética , ADN Ribosómico/química , ADN Ribosómico/genética , Formiatos/metabolismo , Concentración de Iones de Hidrógeno , Methanomicrobiales/genética , Methanomicrobiales/fisiología , Datos de Secuencia Molecular , Oxidorreductasas/genética , Filogenia , Propionatos/metabolismo , ARN Ribosómico 16S/genética , Análisis de Secuencia de ADN , Temperatura
18.
Int J Syst Evol Microbiol ; 60(Pt 12): 2918-2923, 2010 Dec.
Artículo en Inglés | MEDLINE | ID: mdl-20097796

RESUMEN

A novel hydrogenotrophic methanogen, designated strain MRE50(T), was isolated from a methanogenic consortium, which was originally established from an Italian rice field soil. Cells were non-motile rods, 1.3-2.8 µm long and 0.4-0.7 µm wide. Coccoid cells were also observed in cultures at the late-exponential phase of growth. Strain MRE50(T) grew at 37-55 °C (optimally at 45 °C), at pH 6-7.8 (optimally at pH 7.0) and in the presence of 0-20 g NaCl l(-1). The isolate utilized H(2)/CO(2) and formate for growth and methane production. Phylogenetic analyses of the 16S rRNA gene and the methanogen-specific marker gene mcrA showed that strain MRE50(T) is affiliated with the order Methanocellales, previously known as uncultured archaeal group Rice Cluster I. Based on both 16S rRNA gene and mcrA gene sequences, strain MRE50(T) was related most closely to Methanocella paludicola SANAE(T). Levels of sequence similarity were 92.5 and 86.1 %, respectively, indicating that strains MRE50(T) and Methanocella paludicola SANAE(T) represent different species within the genus Methanocella. In addition, although these strains shared phenotypic properties including cell morphology and substrate utilization, they differed with respect to susceptibility to antibiotics, and temperature and NaCl ranges for growth. Given the phenotypic differences and the distinct phylogenetic placement of the new isolate relative to the type species of the genus Methanocella, strain MRE50(T) is considered to represent a novel species of the genus Methanocella, for which the name Methanocella arvoryzae sp. nov. is proposed. The type strain is MRE50(T) (=NBRC 105507(T) =DSM 22066(T)).


Asunto(s)
Archaea/clasificación , Metano/metabolismo , Oryza/microbiología , Filogenia , Microbiología del Suelo , Archaea/genética , Archaea/aislamiento & purificación , Composición de Base , ADN de Archaea/genética , Italia , Datos de Secuencia Molecular , ARN Ribosómico 16S/genética , Análisis de Secuencia de ADN
19.
Appl Environ Microbiol ; 75(14): 4892-6, 2009 Jul.
Artículo en Inglés | MEDLINE | ID: mdl-19465530

RESUMEN

We previously reported the isolation of novel methanogens by using a new cultivation method, referred to as the coculture method. Here, we extended our coculture method to various anaerobic environmental samples. As a result, we successfully cultivated some uncharacterized methanogens in coculture enrichments and eventually isolated a new methanogen, within the order Methanomicrobiales.


Asunto(s)
Bacterias/crecimiento & desarrollo , Bacterias/metabolismo , Microbiología Ambiental , Hidrógeno/metabolismo , Metano/metabolismo , Bacterias/clasificación , Bacterias/genética , Análisis por Conglomerados , Técnicas de Cocultivo/métodos , ADN de Archaea/química , ADN de Archaea/genética , ADN Bacteriano/química , ADN Bacteriano/genética , ADN Ribosómico/química , ADN Ribosómico/genética , Datos de Secuencia Molecular , Filogenia , ARN Ribosómico 16S/genética , Análisis de Secuencia de ADN
20.
Front Microbiol ; 10: 1729, 2019.
Artículo en Inglés | MEDLINE | ID: mdl-31404165

RESUMEN

Serpentinitic systems are potential habitats for microbial life due to frequently high concentrations of microbial energy substrates, such as hydrogen (H2), methane (CH4), and short-chain organic acids (SCOAs). Yet, many serpentinitic systems are also physiologically challenging environments due to highly alkaline conditions (pH > 10) and elevated temperatures (>80°C). To elucidate the possibility of microbial life in deep serpentinitic crustal environments, International Ocean Discovery Program (IODP) Expedition 366 drilled into the Yinazao, Fantangisña, and Asùt Tesoru serpentinite mud volcanoes on the Mariana Forearc. These mud volcanoes differ in temperature (80, 150, 250°C, respectively) of the underlying subducting slab, and in the porewater pH (11.0, 11.2, 12.5, respectively) of the serpentinite mud. Increases in formate and acetate concentrations across the three mud volcanoes, which are positively correlated with temperature in the subducting slab and coincide with strong increases in H2 concentrations, indicate a serpentinization-related origin. Thermodynamic calculations suggest that formate is produced by equilibrium reactions with dissolved inorganic carbon (DIC) + H2, and that equilibration continues during fluid ascent at temperatures below 80°C. By contrast, the mechanism(s) of acetate production are not clear. Besides formate, acetate, and H2 data, we present concentrations of other SCOAs, methane, carbon monoxide, and sulfate, δ13C-data on bulk carbon pools, and microbial cell counts. Even though calculations indicate a wide range of microbial catabolic reactions to be thermodynamically favorable, concentration profiles of potential energy substrates, and very low cell numbers suggest that microbial life is scarce or absent. We discuss the potential roles of temperature, pH, pressure, and dispersal in limiting the occurrence of microbial life in deep serpentinitic environments.

SELECCIÓN DE REFERENCIAS
DETALLE DE LA BÚSQUEDA