Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 7 de 7
Filtrar
1.
Development ; 148(11)2021 06 01.
Artículo en Inglés | MEDLINE | ID: mdl-34106226

RESUMEN

Defects in the evolutionarily conserved protein-glycosylation machinery during embryonic development are often fatal. Consequently, congenital disorders of glycosylation (CDG) in human are rare. We modelled a putative hypomorphic mutation described in an alpha-1,3/1,6-mannosyltransferase (ALG2) index patient (ALG2-CDG) to address the developmental consequences in the teleost medaka (Oryzias latipes). We observed specific, multisystemic, late-onset phenotypes, closely resembling the patient's syndrome, prominently in the facial skeleton and in neuronal tissue. Molecularly, we detected reduced levels of N-glycans in medaka and in the patient's fibroblasts. This hypo-N-glycosylation prominently affected protein abundance. Proteins of the basic glycosylation and glycoprotein-processing machinery were over-represented in a compensatory response, highlighting the regulatory topology of the network. Proteins of the retinal phototransduction machinery, conversely, were massively under-represented in the alg2 model. These deficiencies relate to a specific failure to maintain rod photoreceptors, resulting in retinitis pigmentosa characterized by the progressive loss of these photoreceptors. Our work has explored only the tip of the iceberg of N-glycosylation-sensitive proteins, the function of which specifically impacts on cells, tissues and organs. Taking advantage of the well-described human mutation has allowed the complex interplay of N-glycosylated proteins and their contribution to development and disease to be addressed.


Asunto(s)
Manosiltransferasas/genética , Manosiltransferasas/metabolismo , Oryzias/genética , Oryzias/metabolismo , Animales , Trastornos Congénitos de Glicosilación/genética , Trastornos Congénitos de Glicosilación/metabolismo , Modelos Animales de Enfermedad , Fibroblastos/metabolismo , Glicoproteínas/genética , Glicoproteínas/metabolismo , Glicosilación , Humanos , Mutación , Fenotipo , Polisacáridos , Retinitis Pigmentosa
2.
Clin Proteomics ; 21(1): 16, 2024 Feb 29.
Artículo en Inglés | MEDLINE | ID: mdl-38424496

RESUMEN

BACKGROUND: Presently, antibody concentration measurements for patients undergoing treatment are predominantly determined by ELISA, which still comes with known disadvantages. Therefore, our aim was to establish a targeted mass-spectrometric assay enabling the reproducible absolute quantification of peptides from the hypervariable and interaction regions of infliximab. METHODS: Peptides of infliximab were measured post-trypsin digestion and subsequent separation on a Vanquish Horizon UHPLC coupled to a TSQ Altis Triple-Quad mass spectrometer. Normalization and absolute quantification were conducted using stable isotope-synthesized peptides. Calibration curves covering a range of 0.25-50 µg/ml were employed for quantitation. RESULTS: We demonstrated the substantial influence of peptide selection, choice of hydrolase for digestion, and digestion time on absolute peptide yield (28-44% for peptide 1 and 64-97% for peptide 2). Furthermore, we showed that the generated calibration curves for absolute quantification were highly reproducible and robust (LLOQ1 0.72 µg/ml and LLOQ2 1.00 µg/ml) over several months. In comparison to ELISA values, the absolute values obtained by mass spectrometry often yielded lower results for both targeted peptides. CONCLUSIONS: In this study, a semi-automated workflow was employed and tested with 8 patients and corresponding replicates (n = 3-4). We demonstrated the robust implementation of calibration curves for the absolute quantification of infliximab in patient samples, with coefficients of variation ranging from 0.5 to 9%. Taken together, we have developed a platform enabling the rapid (2 days of sample preparation and 30 min of measurement time per sample) and robust quantification of Infliximab antibody concentration in patients. The use of mass spectrometry also facilitates the straightforward expansion of the method to include additional antibody peptides.

3.
Int J Mol Sci ; 25(2)2024 Jan 18.
Artículo en Inglés | MEDLINE | ID: mdl-38256263

RESUMEN

Protein glycosylation is an essential post-translational modification in all domains of life. Its impairment in humans can result in severe diseases named congenital disorders of glycosylation (CDGs). Most of the glycosyltransferases (GTs) responsible for proper glycosylation are polytopic membrane proteins that represent challenging targets in proteomics. We established a multiple reaction monitoring (MRM) assay to comprehensively quantify GTs involved in the processes of N-glycosylation and O- and C-mannosylation in the endoplasmic reticulum. High robustness was achieved by using an enriched membrane protein fraction of isotopically labeled HEK 293T cells as an internal protein standard. The analysis of primary skin fibroblasts from eight CDG type I patients with impaired ALG1, ALG2, and ALG11 genes, respectively, revealed a substantial reduction in the corresponding protein levels. The abundance of the other GTs, however, remained unchanged at the transcript and protein levels, indicating that there is no fail-safe mechanism for the early steps of glycosylation in the endoplasmic reticulum. The established MRM assay was shared with the scientific community via the commonly used open source Skyline software environment, including Skyline Batch for automated data analysis. We demonstrate that another research group could easily reproduce all analysis steps, even while using different LC-MS hardware.


Asunto(s)
Trastornos Congénitos de Glicosilación , Glicosiltransferasas , Humanos , Glicosilación , Glicosiltransferasas/genética , Trastornos Congénitos de Glicosilación/genética , Proteómica , Procesamiento Proteico-Postraduccional , Proteínas de la Membrana/genética , Manosiltransferasas
4.
Mol Cell Proteomics ; 20: 100092, 2021.
Artículo en Inglés | MEDLINE | ID: mdl-33975020

RESUMEN

C-mannosylation is a modification of tryptophan residues with a single mannose and can affect protein folding, secretion, and/or function. To date, only a few proteins have been demonstrated to be C-mannosylated, and studies that globally assess protein C-mannosylation are scarce. To interrogate the C-mannosylome of human induced pluripotent stem cells, we compared the secretomes of CRISPR-Cas9 mutants lacking either the C-mannosyltransferase DPY19L1 or DPY19L3 to WT human induced pluripotent stem cells using MS-based quantitative proteomics. The secretion of numerous proteins was reduced in these mutants, including that of A Disintegrin And Metalloproteinase with ThromboSpondin Motifs 16 (ADAMTS16), an extracellular protease that was previously reported to be essential for optic fissure fusion in zebrafish eye development. To test the functional relevance of this observation, we targeted dpy19l1 or dpy19l3 in embryos of the Japanese rice fish medaka (Oryzias latipes) by CRISPR-Cas9. We observed that targeting of dpy19l3 partially caused defects in optic fissure fusion, called coloboma. We further showed in a cellular model that DPY19L1 and DPY19L3 mediate C-mannosylation of a recombinantly expressed thrombospondin type 1 repeat of ADAMTS16 and thereby support its secretion. Taken together, our findings imply that DPY19L3-mediated C-mannosylation is involved in eye development by assisting secretion of the extracellular protease ADAMTS16.


Asunto(s)
Proteínas ADAMTS/metabolismo , Ojo/crecimiento & desarrollo , Manosiltransferasas/metabolismo , Animales , Línea Celular , Cricetulus , Edición Génica , Técnicas de Silenciamiento del Gen , Humanos , Células Madre Pluripotentes Inducidas/metabolismo , Manosa , Manosiltransferasas/genética , Oryzias
5.
BMC Biol ; 20(1): 264, 2022 11 30.
Artículo en Inglés | MEDLINE | ID: mdl-36447206

RESUMEN

BACKGROUND: The SARS-CoV-2/COVID-19 pandemic has inflicted medical and socioeconomic havoc, and despite the current availability of vaccines and broad implementation of vaccination programs, more easily accessible and cost-effective acute treatment options preventing morbidity and mortality are urgently needed. Herbal teas have historically and recurrently been applied as self-medication for prophylaxis, therapy, and symptom alleviation in diverse diseases, including those caused by respiratory viruses, and have provided sources of natural products as basis for the development of therapeutic agents. To identify affordable, ubiquitously available, and effective treatments, we tested herbs consumed worldwide as herbal teas regarding their antiviral activity against SARS-CoV-2. RESULTS: Aqueous infusions prepared by boiling leaves of the Lamiaceae perilla and sage elicit potent and sustained antiviral activity against SARS-CoV-2 when applied after infection as well as prior to infection of cells. The herbal infusions exerted in vitro antiviral effects comparable to interferon-ß and remdesivir but outperformed convalescent sera and interferon-α2 upon short-term treatment early after infection. Based on protein fractionation analyses, we identified caffeic acid, perilla aldehyde, and perillyl alcohol as antiviral compounds. Global mass spectrometry (MS) analyses performed comparatively in two different cell culture infection models revealed changes of the proteome upon treatment with herbal infusions and provided insights into the mode of action. As inferred by the MS data, induction of heme oxygenase 1 (HMOX-1) was confirmed as effector mechanism by the antiviral activity of the HMOX-1-inducing compounds sulforaphane and fraxetin. CONCLUSIONS: In conclusion, herbal teas based on perilla and sage exhibit antiviral activity against SARS-CoV-2 including variants of concern such as Alpha, Beta, Delta, and Omicron, and we identified HMOX-1 as potential therapeutic target. Given that perilla and sage have been suggested as treatment options for various diseases, our dataset may constitute a valuable resource also for future research beyond virology.


Asunto(s)
Tratamiento Farmacológico de COVID-19 , Tés de Hierbas , Humanos , SARS-CoV-2 , Antivirales/farmacología , Antivirales/uso terapéutico , Pandemias , Sueroterapia para COVID-19
6.
J Proteome Res ; 21(4): 1181-1188, 2022 04 01.
Artículo en Inglés | MEDLINE | ID: mdl-35316605

RESUMEN

As novel liquid chromatography-mass spectrometry (LC-MS) technologies for proteomics offer a substantial increase in LC-MS runs per day, robust and reproducible sample preparation emerges as a new bottleneck for throughput. We introduce a novel strategy for positive-pressure 96-well filter-aided sample preparation (PF96) on a commercial positive-pressure solid-phase extraction device. PF96 allows for a five-fold increase in throughput in conjunction with extraordinary reproducibility with Pearson product-moment correlations on the protein level of r = 0.9993, as demonstrated for mouse heart tissue lysate in 40 technical replicates. The targeted quantification of 16 peptides in the presence of stable-isotope-labeled reference peptides confirms that PF96 variance is barely assessable against technical variation from nanoLC-MS instrumentation. We further demonstrate that protein loads of 36-60 µg result in optimal peptide recovery, but lower amounts ≥3 µg can also be processed reproducibly. In summary, the reproducibility, simplicity, and economy of time provide PF96 a promising future in biomedical and clinical research.


Asunto(s)
Péptidos , Proteómica , Animales , Cromatografía Liquida/métodos , Humanos , Espectrometría de Masas/métodos , Ratones , Péptidos/análisis , Proteómica/métodos , Reproducibilidad de los Resultados
7.
Nat Commun ; 9(1): 1686, 2018 04 27.
Artículo en Inglés | MEDLINE | ID: mdl-29703974

RESUMEN

Bacterial toxin-antitoxin complexes are emerging as key players modulating bacterial physiology as activation of toxins induces stasis or programmed cell death by interference with vital cellular processes. Zeta toxins, which are prevalent in many bacterial genomes, were shown to interfere with cell wall formation by perturbing peptidoglycan synthesis in Gram-positive bacteria. Here, we characterize the epsilon/zeta toxin-antitoxin (TA) homologue from the Gram-negative pathogen Neisseria gonorrhoeae termed ng_ɛ1 / ng_ζ1. Contrary to previously studied streptococcal epsilon/zeta TA systems, ng_ɛ1 has an epsilon-unrelated fold and ng_ζ1 displays broader substrate specificity and phosphorylates multiple UDP-activated sugars that are precursors of peptidoglycan and lipopolysaccharide synthesis. Moreover, the phosphorylation site is different from the streptococcal zeta toxins, resulting in a different interference with cell wall synthesis. This difference most likely reflects adaptation to the individual cell wall composition of Gram-negative and Gram-positive organisms but also the distinct involvement of cell wall components in virulence.


Asunto(s)
Toxinas Bacterianas/metabolismo , Pared Celular/metabolismo , Neisseria gonorrhoeae/fisiología , Peptidoglicano/biosíntesis , Sistemas Toxina-Antitoxina/fisiología , Adaptación Fisiológica , Neisseria gonorrhoeae/patogenicidad , Fosforilación , Especificidad por Sustrato , Virulencia/fisiología
SELECCIÓN DE REFERENCIAS
DETALLE DE LA BÚSQUEDA