Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 4 de 4
Filtrar
Más filtros

Bases de datos
Tipo del documento
País de afiliación
Intervalo de año de publicación
1.
Sens Actuators A Phys ; 3772024 Oct 16.
Artículo en Inglés | MEDLINE | ID: mdl-39129941

RESUMEN

Capacitors are essential components in modern electrical systems, functioning primarily to store electrical charges and regulate current flow. Capacitive sensors, developed in the 20th century, have become crucial in various applications, including touchscreens and smart devices, due to their ability to detect both metallic and non-metallic objects with high sensitivity and low energy consumption. The advancement of microelectromechanical systems (MEMS) and nanotechnology has significantly enhanced the capabilities of capacitive sensors, leading to unprecedented sensitivity, dynamic range, and cost-effectiveness. These sensors are integral to modern devices, enabling precise measurements of proximity, pressure, strain, and other parameters. This review provides a comprehensive overview of the development, fabrication, and integration of micro and nanostructured capacitive sensors. In terms of an electric field, the working and detection principles are discussed with analytical equations and our numerical results. The focus extends to novel fabrication methods using advanced materials to enhance sensitivities for various parameters, such as proximity, force, pressure, strain, temperature, humidity, and liquid sensing. Their applications are demonstrated in wearable devices, human-machine interfaces, biomedical sensing, health monitoring, robotics control, industrial monitoring, and molecular detection. By consolidating existing research, this review offers insights into the advancements and future directions of capacitive sensor technology.

2.
Sensors (Basel) ; 23(24)2023 Dec 09.
Artículo en Inglés | MEDLINE | ID: mdl-38139573

RESUMEN

Skin-based wearable devices have gained significant attention due to advancements in soft materials and thin-film technologies. Nevertheless, traditional wearable electronics often entail expensive and intricate manufacturing processes and rely on metal-based substrates that are susceptible to corrosion and lack flexibility. In response to these challenges, this paper has emerged with an alternative substrate for wearable electrodes due to its cost-effectiveness and scalability in manufacturing. Paper-based electrodes offer an attractive solution with their inherent properties of high breathability, flexibility, biocompatibility, and tunability. In this study, we introduce carbon nanotube-based paper composites (CPC) electrodes designed for the continuous detection of biopotential signals, such as electrooculography (EOG), electrocardiogram (ECG), and electroencephalogram (EEG). To prevent direct skin contact with carbon nanotubes, we apply various packaging materials, including polydimethylsiloxane (PDMS), Eco-flex, polyimide (PI), and polyurethane (PU). We conduct a comparative analysis of their signal-to-noise ratios in comparison to conventional gel electrodes. Our system demonstrates real-time biopotential monitoring for continuous health tracking, utilizing CPC in conjunction with a portable data acquisition system. The collected data are analyzed to provide accurate heart rates, respiratory rates, and heart rate variability metrics. Additionally, we explore the feasibility using CPC for sleep monitoring by collecting EEG signals.


Asunto(s)
Nanotubos de Carbono , Dispositivos Electrónicos Vestibles , Nanotubos de Carbono/química , Piel , Electrodos , Sueño , Electrocardiografía
3.
J Neurosci Methods ; 410: 110249, 2024 Oct.
Artículo en Inglés | MEDLINE | ID: mdl-39151657

RESUMEN

BACKGROUND: Accurate real-time eye tracking is crucial in oculomotor system research. While the scleral search coil system is the gold standard, its implantation procedure and bulkiness pose challenges. Camera-based systems are affected by ambient lighting and require high computational and electric power. NEW METHOD: This study presents a novel eye tracker using proximity capacitive sensors made of carbon-nanotube-paper-composite (CPC). These sensors detect femtofarad-level capacitance changes caused by primate corneal movement during horizontal and vertical eye rotations. Data processing and machine learning algorithms are evaluated to enhance the accuracy of gaze angle prediction. RESULTS: The system performance is benchmarked against the scleral coil during smooth pursuits, saccades tracking, and fixations. The eye tracker demonstrates up to 0.97 correlation with the coil in eye tracking and is capable of estimating gaze angle with a median absolute error as low as 0.30°. COMPARISON: The capacitive eye tracker demonstrates good consistency and accuracy in comparison to the gold-standard scleral search coil method. CONCLUSIONS: This lightweight, non-invasive capacitive eye tracker offers potential as an alternative to traditional coil and camera-based systems in oculomotor research and vision science.


Asunto(s)
Tecnología de Seguimiento Ocular , Aprendizaje Automático , Nanotubos de Carbono , Animales , Tecnología de Seguimiento Ocular/instrumentación , Movimientos Oculares/fisiología , Macaca mulatta , Masculino , Algoritmos
4.
Biosensors (Basel) ; 12(3)2022 Feb 28.
Artículo en Inglés | MEDLINE | ID: mdl-35323418

RESUMEN

Current point-of-care (POC) screening of Coronavirus disease 2019 (COVID-19) requires further improvements to achieve highly sensitive, rapid, and inexpensive detection. Here we describe an immunoresistive sensor on a polyethylene terephthalate (PET) film for simple, inexpensive, and highly sensitive COVID-19 screening. The sensor is composed of single-walled carbon nanotubes (SWCNTs) functionalized with monoclonal antibodies that bind to the spike protein of SARS-CoV-2. Silver electrodes are silkscreen-printed on SWCNTs to reduce contact resistance. We determine the SARS-CoV-2 status via the resistance ratio of control- and SARS-CoV-2 sensor electrodes. A combined measurement of two adjacent sensors enhances the sensitivity and specificity of the detection protocol. The lower limit of detection (LLD) of the SWCNT assay is 350 genome equivalents/mL. The developed SWCNT sensor shows 100% sensitivity and 90% specificity in clinical sample testing. Further, our device adds benefits of a small form factor, simple operation, low power requirement, and low assay cost. This highly sensitive film sensor will facilitate rapid COVID-19 screening and expedite the development of POC screening platforms.


Asunto(s)
Técnicas Biosensibles , COVID-19 , Nanotubos de Carbono , Técnicas Biosensibles/métodos , COVID-19/diagnóstico , Humanos , Límite de Detección , Sistemas de Atención de Punto , SARS-CoV-2
SELECCIÓN DE REFERENCIAS
DETALLE DE LA BÚSQUEDA