Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 11 de 11
Filtrar
1.
Heliyon ; 9(10): e20112, 2023 Oct.
Artículo en Inglés | MEDLINE | ID: mdl-37767500

RESUMEN

Pharmacological studies aimed at the development of newly synthesized drugs directed against ion channels (as well as genetic studies of ion channel mutations) involve the development and use of transfected cells. However, the identification of the best clone, in terms of transfection efficiency, is often a time consuming procedure when performed through traditional methods such as manual patch-clamp. On the other hand, the use of other faster techniques, such as for example the IF, are not informative on the effective biological functionality of the transfected ion channel(s). In the present work, we used the high throughput automated ion channel reader (ICR) technology (ICR8000 Aurora Biomed Inc.) that combine atomic absorption spectroscopy with a patented microsampling process to accurately measure ion flux in cell-based screening assays. This technology indeed helped us to evaluate the transfection efficiency of hERG1 and hKv1.3 channels respectively on the HEK-293 and CHO cellular models. Moreover, as proof of the validity of this innovative method, we have corroborated these data with the functional characterization of the potassium currents carried out by the same clones through patch-clamp recordings. The results obtained in our study are promising and represent a valid methodological strategy to screen a large number of clones simultaneously and to pharmacologically evaluate their functionality within an extremely faster timeframe.

3.
Front Immunol ; 14: 1111471, 2023.
Artículo en Inglés | MEDLINE | ID: mdl-37744334

RESUMEN

The functional relevance of K+ and Ca2+ ion channels in the "Store Operated Calcium Entry" (SOCE) during B and T lymphocyte activation is well proven. However, their role in the process of T- and B- cell development and selection is still poorly defined. In this scenario, our aim was to characterize the expression of the ether à-go-go-related gene 1 (ERG1) and KV1.3 K+ channels during the early stages of mouse lymphopoiesis and analyze how they affect Ca2+signaling, or other signaling pathways, known to mediate selection and differentiation processes of lymphoid clones. We provide here evidence that the mouse (m)ERG1 is expressed in primary lymphoid organs, bone marrow (BM), and thymus of C57BL/6 and SV129 mice. This expression is particularly evident in the BM during the developmental stages of B cells, before the positive selection (large and small PreB). mERG1 is also expressed in all thymic subsets of both strains, when lymphocyte positive and negative selection occurs. Partially overlapping results were obtained for KV1.3 expression. mERG1 and KV1.3 were expressed at significantly higher levels in B-cell precursors of mice developing an experimental autoimmune encephalomyelitis (EAE). The pharmacological blockage of ERG1 channels with E4031 produced a significant reduction in intracellular Ca2+ after lymphocyte stimulation in the CD4+ and double-positive T-cell precursors' subsets. This suggests that ERG1 might contribute to maintaining the electrochemical gradient responsible for driving Ca2+ entry, during T-cell receptor signaling which sustains lymphocyte selection checkpoints. Such role mirrors that performed by the shaker-type KV1.3 potassium channel during the activation process of mature lymphocytes. No effects on Ca2+ signaling were observed either in B-cell precursors after blocking KV1.3 with PSORA-4. In the BM, the pharmacological blockage of ERG1 channels produced an increase in ERK phosphorylation, suggesting an effect of ERG1 in regulating B-lymphocyte precursor clones' proliferation and checkpoint escape. Overall, our results suggest a novel physiological function of ERG1 in the processes of differentiation and selection of lymphoid precursors, paving the way to further studies aimed at defining the expression and role of ERG1 channels in immune-based pathologies in addition to that during lymphocyte neoplastic transformation.


Asunto(s)
Encefalomielitis Autoinmune Experimental , Linfocitos T , Animales , Ratones , Ratones Endogámicos C57BL , Activación de Linfocitos , Éteres , Receptores de Antígenos de Linfocitos T
4.
Eur J Med Chem ; 259: 115561, 2023 Nov 05.
Artículo en Inglés | MEDLINE | ID: mdl-37454520

RESUMEN

Voltage-gated potassium channel KV1.3 inhibitors have been shown to be effective in preventing T-cell proliferation and activation by affecting intracellular Ca2+ homeostasis. Here, we present the structure-activity relationship, KV1.3 inhibition, and immunosuppressive effects of new thiophene-based KV1.3 inhibitors with nanomolar potency on K+ current in T-lymphocytes and KV1.3 inhibition on Ltk- cells. The new KV1.3 inhibitor trans-18 inhibited KV1.3 -mediated current in phytohemagglutinin (PHA)-activated T-lymphocytes with an IC50 value of 26.1 nM and in mammalian Ltk- cells with an IC50 value of 230 nM. The KV1.3 inhibitor trans-18 also had nanomolar potency against KV1.3 in Xenopus laevis oocytes (IC50 = 136 nM). The novel thiophene-based KV1.3 inhibitors impaired intracellular Ca2+ signaling as well as T-cell activation, proliferation, and colony formation.


Asunto(s)
Inmunosupresores , Canales de Potasio con Entrada de Voltaje , Tiofenos , Animales , Mamíferos/metabolismo , Bloqueadores de los Canales de Potasio/farmacología , Canales de Potasio/metabolismo , Canales de Potasio/farmacología , Canales de Potasio con Entrada de Voltaje/farmacología , Relación Estructura-Actividad , Linfocitos T , Tiofenos/química , Tiofenos/farmacología , Inmunosupresores/química
5.
Cancers (Basel) ; 13(16)2021 Aug 20.
Artículo en Inglés | MEDLINE | ID: mdl-34439343

RESUMEN

Because of its high incidence and poor prognosis, colorectal cancer (CRC) represents an important health issue in several countries. As with other carcinomas, the so-called tumour microenvironment (TME) has been shown to play key roles in CRC progression and related therapeutical outcomes, even though a deeper understanding of the underlying molecular mechanisms is needed to devise new treatment strategies. For some years now, omics technologies and consolidated bioinformatics pipelines have allowed scientists to access large amounts of biologically relevant information, even when starting from small tissue samples; thus, in order to shed new light upon the role of the TME in CRC, we compared the gene expression profiles of 6 independent tumour tissues (all progressed towards metastatic disease) to the expression profile of the surrounding stromata. To do this, paraffin-embedded whole tissues were first microdissected to obtain samples enriched with tumour and stromal cells, respectively. Afterwards, RNA was extracted and analysed using a microarray-based approach. A thorough bioinformatics analysis was then carried out to identify transcripts differentially expressed between the two groups and possibly enriched functional terms. Overall, 193 genes were found to be significantly downregulated in tumours compared to the paired stromata. The functional analysis of the downregulated gene list revealed three principal macro areas of interest: the extracellular matrix, cell migration, and angiogenesis. Conversely, among the upregulated genes, the main alterations detected by the functional annotation were related to the ribosomal proteins (rProteins) of both the large (60S) and small (40S) subunits of the cytosolic ribosomes. Subsequent gene set enrichment analysis (GSEA) confirmed the massive overexpression of most cytosolic-but not mitochondrial-ribosome rProteins.

6.
Data Brief ; 34: 106668, 2021 Feb.
Artículo en Inglés | MEDLINE | ID: mdl-33385031

RESUMEN

In the present work, applying the whole-cell patch-clamp technique in voltage clamp mode, we have investigated the effects of different drugs, such as riluzole, Psora-4 and Tram-34, on the potassium currents in four human lymphoma cell lines. We focused on outward currents mediated by two potassium channels (Kv1.3 and KCa3.1), which are known to play a key physiological role in lymphoid cells. The currents were evoked by voltage ramps ranging from -120 mV to +40 mV and the conductance of the two potassium channels was measured between +20 mV and +40 mV, both in the absence and in the presence of the specific blockers Psora-4 (Kv1.3; 1 µM) and Tram-34 (KCa3.1; 1 µM). The effect of the latter was tested after KCa3.1 channels were activated by riluzole 10 µM. Taken together, these data could be useful as an indication of the functional characteristics of the potassium channels in human lymphomas and represent a starting point for the study of potassium conductance in cellular models of these tumors.

7.
Sci Rep ; 11(1): 8847, 2021 04 23.
Artículo en Inglés | MEDLINE | ID: mdl-33893331

RESUMEN

The receptor for the luteinizing hormone (LH-R) is aberrantly over expressed in cancers of the reproductive system. To uncover whether LH-R over expression has a causative role in cancer, we generated a transgenic (TG) mouse which overexpresses the human LH-R (hLH-R) in the female reproductive tract, under the control of the oviduct-specific glycoprotein (OGP) mouse promoter (mogp-1). The transgene was highly expressed in the uterus, ovary and liver, but only in the uterus morphological and molecular alterations (increased proliferation and trans-differentiation in the endometrial layer) were detected. A transcriptomic analysis on the uteri of young TG mice showed an up regulation of genes involved in cell cycle control and a down regulation of genes related to the immune system and the metabolism of xenobiotics. Aged TG females developed tumor masses in the uteri, which resembled an Endometrial Cancer (EC). Microarray and immunohistochemistry data indicated the deregulation of signaling pathways which are known to be altered in human ECs. The analysis of a cohort of 126 human ECs showed that LH-R overexpression is associated with early-stage tumors. Overall, our data led support to conclude that LH-R overexpression may directly contribute to trigger the neoplastic transformation of the endometrium.


Asunto(s)
Neoplasias Endometriales/patología , Genitales Femeninos/metabolismo , Receptores de HL/metabolismo , Animales , Transformación Celular Neoplásica , Estudios de Cohortes , Regulación hacia Abajo , Femenino , Humanos , Ratones , Ratones Transgénicos , Receptores de HL/genética , Transcriptoma , Regulación hacia Arriba
8.
Nat Commun ; 11(1): 5865, 2020 11 17.
Artículo en Inglés | MEDLINE | ID: mdl-33203881

RESUMEN

Understanding the molecular events controlling melanoma progression is of paramount importance for the development of alternative treatment options for this devastating disease. Here we report a mechanism regulated by the oncogenic SOX2-GLI1 transcriptional complex driving melanoma invasion through the induction of the sialyltransferase ST3GAL1. Using in vitro and in vivo studies, we demonstrate that ST3GAL1 drives melanoma metastasis. Silencing of this enzyme suppresses melanoma invasion and significantly reduces the ability of aggressive melanoma cells to enter the blood stream, colonize distal organs, seed and survive in the metastatic environment. Analysis of glycosylated proteins reveals that the receptor tyrosine kinase AXL is a major effector of ST3GAL1 pro-invasive function. ST3GAL1 induces AXL dimerization and activation that, in turn, promotes melanoma invasion. Our data support a key role of the ST3GAL1-AXL axis as driver of melanoma metastasis, and highlight the therapeutic potential of targeting this axis to treat metastatic melanoma.


Asunto(s)
Melanoma/patología , Proteínas Proto-Oncogénicas/metabolismo , Proteínas Tirosina Quinasas Receptoras/metabolismo , Factores de Transcripción SOXB1/metabolismo , Sialiltransferasas/metabolismo , Neoplasias Cutáneas/patología , Proteína con Dedos de Zinc GLI1/metabolismo , Animales , Regulación Neoplásica de la Expresión Génica , Glicosilación , Humanos , Melanoma/genética , Melanoma/metabolismo , Ratones Desnudos , Complejos Multiproteicos/genética , Complejos Multiproteicos/metabolismo , Proteínas Proto-Oncogénicas/genética , Proteínas Tirosina Quinasas Receptoras/genética , Factores de Transcripción SOXB1/genética , Sialiltransferasas/genética , Neoplasias Cutáneas/genética , Neoplasias Cutáneas/metabolismo , Transcripción Genética , Ensayos Antitumor por Modelo de Xenoinjerto , Proteína con Dedos de Zinc GLI1/genética , beta-Galactosida alfa-2,3-Sialiltransferasa , Tirosina Quinasa del Receptor Axl , Melanoma Cutáneo Maligno
9.
Sci Rep ; 9(1): 8586, 2019 06 13.
Artículo en Inglés | MEDLINE | ID: mdl-31197180

RESUMEN

The definition of the gene expression profile of genes encoding Ion Channels and Transporters (ICT-GEP) represents a novel and attracting aspect in cancer. We determined the ICT-GEP of Follicular Lymphoma (FL), and compared it with that of the more aggressive Diffuse Large B Cell Lymphoma (DLBCL). cDNA microarray data were collected both from patients enrolled for this study, and from public datasets. In FL the ICT-GEP indicated the overexpression of both the K+ channel encoding gene KCNN4, and SLC2A1, which encodes the Glut1 glucose transporter. SLC2A1 turned out to represent the hub of a functional network, connecting channels and transporters in FL. Relapsed FL patients were characterised by 38 differentially expressed ICT genes, among which ATP9A, SLC2A1 and KCNN4 were under-expressed, indicating a down-regulation of both excitability and glycolysis. A completely different profile of K+ channel encoding genes emerged in DLBCL accompanied by the over-expression of the fatty acid transporter-encoding gene SLC27A1 as well as of the metabolism regulator NCoR1. This indicates a change in excitability and a shift towards an oxidative metabolism in DLBCL. Overall, the ICT-GEP may contribute to identifying novel lymphoma biomarkers related to excitability and metabolic pathways, with particular relevance for drug resistant, relapsed FL.


Asunto(s)
Progresión de la Enfermedad , Perfilación de la Expresión Génica , Regulación Neoplásica de la Expresión Génica , Canales Iónicos/genética , Linfoma Folicular/genética , Linfoma Folicular/metabolismo , Proteínas de Transporte de Membrana/genética , Anciano , Estudios de Cohortes , Bases de Datos Genéticas , Femenino , Redes Reguladoras de Genes , Humanos , Canales Iónicos/metabolismo , Linfoma Folicular/patología , Linfoma de Células B Grandes Difuso/genética , Linfoma de Células B Grandes Difuso/metabolismo , Linfoma de Células B Grandes Difuso/patología , Masculino , Proteínas de Transporte de Membrana/metabolismo , Persona de Mediana Edad
10.
PLoS One ; 10(3): e0121719, 2015.
Artículo en Inglés | MEDLINE | ID: mdl-25803053

RESUMEN

Activation Induced Deaminase (AID) triggers the antigen-driven antibody diversification processes through its ability to edit DNA. AID dependent DNA damage is also the cause of genetic alterations often found in mature B cell tumors. A number of splice variants of AID have been identified, for which a role in the modulation of its activity has been hypothesized. We have thus tested two of these splice variants, which we find catalytically inactive, for their ability to modulate the activity of endogenous AID in CH12F3 cells, a murine lymphoma cell line in which Class Switch Recombination (CSR) can be induced. In contrast to full-length AID, neither these splice variants or a catalytically impaired AID mutant affect the efficiency of Class Switch Recombination. Thus, while a role for these splice variants at the RNA level remains possible, it is unlikely that they exert any regulatory effect on the function of AID.


Asunto(s)
Citidina Desaminasa/metabolismo , Cambio de Clase de Inmunoglobulina/genética , Isoformas de Proteínas/metabolismo , Recombinación Genética , Animales , Línea Celular Tumoral , Citidina Desaminasa/genética , Ratones , Mutación , Isoformas de Proteínas/genética
11.
Genome Biol ; 15(7): 417, 2014 Jul 31.
Artículo en Inglés | MEDLINE | ID: mdl-25085003

RESUMEN

BACKGROUND: The AID/APOBECs are deaminases that act on cytosines in a diverse set of pathways and some of them have been linked to the onset of genetic alterations in cancer. Among them, APOBEC1 is the only family member to physiologically target RNA, as the catalytic subunit in the Apolipoprotein B mRNA editing complex. APOBEC1 has been linked to cancer development in mice but its oncogenic mechanisms are not yet well understood. RESULTS: We analyze whether expression of APOBEC1 induces a mutator phenotype in vertebrate cells, likely through direct targeting of genomic DNA. We show its ability to increase the inactivation of a stably inserted reporter gene in a chicken cell line that lacks any other AID/APOBEC proteins, and to increase the number of imatinib-resistant clones in a human cellular model for chronic myeloid leukemia through induction of mutations in the BCR-ABL1 fusion gene. Moreover, we find the presence of an AID/APOBEC mutational signature in esophageal adenocarcinomas, a type of tumor where APOBEC1 is expressed, that mimics the one preferred by APOBEC1 in vitro. CONCLUSIONS: Our findings suggest that the ability of APOBEC1 to trigger genetic alterations represents a major layer in its oncogenic potential. Such APOBEC1-induced mutator phenotypes could play a role in the onset of esophageal adenocarcinomas. APOBEC1 could be involved in cancer promotion at the very early stages of carcinogenesis, as it is highly expressed in Barrett's esophagus, a condition often associated with esophageal adenocarcinoma.


Asunto(s)
Adenocarcinoma/genética , Citidina Desaminasa/genética , Resistencia a Antineoplásicos , Neoplasias Esofágicas/genética , Leucemia Mielógena Crónica BCR-ABL Positiva/genética , Mutación , Desaminasas APOBEC-1 , Animales , Benzamidas/farmacología , Línea Celular , Pollos/genética , Regulación de la Expresión Génica , Humanos , Mesilato de Imatinib , Células K562 , Piperazinas/farmacología , Pirimidinas/farmacología , Ratas
SELECCIÓN DE REFERENCIAS
DETALLE DE LA BÚSQUEDA