Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 20 de 148
Filtrar
Más filtros

Bases de datos
País/Región como asunto
Tipo del documento
Intervalo de año de publicación
1.
Arch Biochem Biophys ; 758: 110080, 2024 Aug.
Artículo en Inglés | MEDLINE | ID: mdl-38960345

RESUMEN

Glycyrrhizinic acid (GA) is one of the active substances in licorice root. It exhibits antiviral activity against various enveloped viruses, for example, SARS-CoV-2. GA derivatives are promising biologically active compounds from perspective of developing broad-spectrum antiviral agents. Given that GA nicotinate derivatives (Glycyvir) demonstrate activity against various DNA- and RNA-viruses, a search for a possible mechanism of action of these compounds is required. In the present paper, the interaction of Glycyvir with the transmembrane domain of the SARS-CoV-2 E-protein (ETM) in a model lipid membrane was investigated by NMR spectroscopy and molecular dynamics simulation. The lipid-mediated influence on localization of the SARS-CoV-2 E-protein by Glycyvir was observed. The presence of Glycyvir leads to deeper immersion of the ETM in lipid bilayer. Taking into account that E-protein plays a significant role in virus production and takes part in virion assembly and budding, the data on the effect of potential antiviral agents on ETM localization and structure in the lipid environment may provide a basis for further studies of potential coronavirus E-protein inhibitors.


Asunto(s)
Antivirales , Ácido Glicirrínico , Membrana Dobles de Lípidos , Simulación de Dinámica Molecular , SARS-CoV-2 , Membrana Dobles de Lípidos/metabolismo , Membrana Dobles de Lípidos/química , Ácido Glicirrínico/farmacología , Ácido Glicirrínico/química , SARS-CoV-2/efectos de los fármacos , SARS-CoV-2/metabolismo , Antivirales/farmacología , Antivirales/química , Proteínas de la Envoltura de Coronavirus/metabolismo , Proteínas de la Envoltura de Coronavirus/química , Humanos , Dominios Proteicos , Tratamiento Farmacológico de COVID-19
2.
J Org Chem ; 89(16): 11593-11606, 2024 Aug 16.
Artículo en Inglés | MEDLINE | ID: mdl-39083794

RESUMEN

Chiral oxygen-containing heterocyclic compounds are of great interest for the development of pharmaceuticals. Monoterpenes and their derivatives are naturally abundant precursors of novel synthetic chiral oxygen-containing heterocyclic compounds. In this study, acid catalyzed reactions of salicylic aldehydes with (-)-8-acetoxy-6-hydroxymethyllimonene, readily accessible from α-pinene, leads to the formation of chiral polycyclic products of various structural types. Three of the six isolated chiral heterocyclic products obtained from salicylic aldehyde contain previously unknown polycyclic ring types. Having carried out the reaction in the presence of Brønsted or Lewis acids (Amberlyst 15, trifluoromethanesulfonic acid, trifluoroacetic acid and boron trifluoride etherate) or aluminosilicates (montmorillonite K10, halloysite nanotubes), we found that the nature of products depends on the catalyst as well as the reaction conditions (reaction time, reactant ratio, presence or absence of solvent). Detailed mechanistic insight on the complex cascade reactions for product formation is provided with extensive experimental and quantum mechanical computational studies.

3.
Biochemistry (Mosc) ; 89(6): 1109-1121, 2024 Jun.
Artículo en Inglés | MEDLINE | ID: mdl-38981704

RESUMEN

At the Institute of Cytology and Genetics (Novosibirsk, Russia) for over 85 generations, gray rats have been selected for high aggression toward humans (aggressive rats) or its complete absence (tame rats). Aggressive rats are an interesting model for studying fear-induced aggression. Benzopentathiepin TC-2153 exerts an antiaggressive effect on aggressive rats and affects the serotonergic system: an important regulator of aggression. The aim of this study was to investigate effects of TC-2153 on key serotonergic-system enzymes - tryptophan hydroxylase 2 (TPH2) and monoamine oxidase A (MAOA) - in the brain of aggressive and tame rats. Either TC-2153 (10 or 20 mg/kg) or vehicle was administered once intraperitoneally to aggressive and tame male rats. TPH2 and MAOA enzymatic activities and mRNA and protein levels were assessed. The selection for high aggression resulted in upregulation of Tph2 mRNA in the midbrain, of the TPH2 protein in the hippocampus, and of proteins TPH2 and MAOA in the hypothalamus, as compared to tame rats. MAO enzymatic activity was higher in the midbrain and hippocampus of aggressive rats while TPH2 activity did not differ between the strains. The single TC-2153 administration decreased TPH2 and MAO activity in the hypothalamus and midbrain, respectively. The drug affected MAOA protein levels in the hypothalamus: upregulated them in aggressive rats and downregulated them in tame ones. Thus, this study shows profound differences in the expression and activity of key serotonergic system enzymes in the brain of rats selectively bred for either highly aggressive behavior toward humans or its absence, and the effects of benzopentathiepin TC-2153 on these enzymes may point to mechanisms of its antiaggressive action.


Asunto(s)
Agresión , Encéfalo , Monoaminooxidasa , Triptófano Hidroxilasa , Animales , Triptófano Hidroxilasa/metabolismo , Triptófano Hidroxilasa/genética , Monoaminooxidasa/metabolismo , Monoaminooxidasa/genética , Ratas , Masculino , Encéfalo/metabolismo , Encéfalo/efectos de los fármacos , Encéfalo/enzimología , Agresión/efectos de los fármacos , Humanos , Serotonina/metabolismo
4.
Chem Biodivers ; : e202401461, 2024 Sep 05.
Artículo en Inglés | MEDLINE | ID: mdl-39233581

RESUMEN

Selective synthesis of polycarbonyl conjugates of (+)-fenchone and (+)-camphor was carried out (44-90% yields) via the ring-opening transformation of 5-acyl-4-pyrones with hydrazones of the corresponding monoterpenoids. A strong influence of the hydrazone fragment on the observed tautomeric equilibrium of the tricarbonyl system was shown. Although the major tautomer of the conjugates is the acyclic polycarbonyl form, the camphor-based conjugates undergo new type of ring-chain tautomerism, diketoenaminone-dihydropyridone equilibrium, and predominantly exist in the cyclic dihydropyridone form in DMSO-d6. The polyketones can undergo intramolecular cyclization to form N-amino-4-pyridones in high selectivity. In vitro screening for activity against the influenza virus H1N1 and vaccinia virus was estimated for the obtained conjugates. The (+)-fenchone derivatives demonstrated the higher activity against vaccinia virus than camphor derivatives. The conjugate, which was prepared from diethyl isochelidonate and hydrazone (+)-fenchone, showed the highest activity against vaccinia virus (SI = 17).

5.
Arch Pharm (Weinheim) ; 357(3): e2300549, 2024 Mar.
Artículo en Inglés | MEDLINE | ID: mdl-38036303

RESUMEN

A new series of heterocyclic derivatives with a 1,7,7-trimethylbicyclo[2.2.1]heptane fragment was designed, synthesised and biologically evaluated. Synthesis of the target compounds was performed using the Cu(I) catalysed cycloaddition reaction. The key starting substances in the click reaction were an alkyne containing a 1,7,7-trimethylbicyclo[2.2.1]heptane fragment and a series of azides with saturated nitrogen-containing heterocycles. Some of the derivatives were found to exhibit strong antiviral activity against Marburg and Ebola pseudotype viruses. Lysosomal trapping assays revealed the derivatives to possess lysosomotropic properties. The molecular modelling study demonstrated the binding affinity between the compounds investigated and the possible active site to be mainly due to hydrophobic interactions. Thus, combining a natural hydrophobic structural fragment and a lysosome-targetable heterocycle may be an effective strategy for designing antiviral agents.


Asunto(s)
Heptanos , Triazoles , Relación Estructura-Actividad , Catálisis , Triazoles/farmacología , Antivirales/farmacología
6.
Int J Mol Sci ; 25(2)2024 Jan 19.
Artículo en Inglés | MEDLINE | ID: mdl-38279210

RESUMEN

Tyrosyl-DNA phosphodiesterase 1 (Tdp1) is an important DNA repair enzyme and one of the causes of tumor resistance to topoisomerase 1 inhibitors such as topotecan. Inhibitors of this Tdp1 in combination with topotecan may improve the effectiveness of therapy. In this work, we synthesized usnic acid derivatives, which are hybrids of its known derivatives: tumor sensitizers to topotecan. New compounds inhibit Tdp1 in the micromolar and submicromolar concentration range; some of them enhance the effect of topotecan on the metabolic activity of cells of various lines according to the MTT test. One of the new compounds (compound 7) not only sensitizes Krebs-2 and Lewis carcinomas of mice to the action of topotecan, but also normalizes the state of the peripheral blood of mice, which is disturbed in the presence of a tumor. Thus, the synthesized substances may be the prototype of a new class of additional therapy for cancer.


Asunto(s)
Benzofuranos , Carcinoma , Topotecan , Animales , Ratones , Topotecan/farmacología , Topotecan/uso terapéutico , Inhibidores de Fosfodiesterasa/farmacología , Hidrolasas Diéster Fosfóricas/metabolismo , Esterasas
7.
Molecules ; 29(3)2024 Jan 24.
Artículo en Inglés | MEDLINE | ID: mdl-38338326

RESUMEN

Deoxycholic acid derivatives containing various heterocyclic functional groups at C-3 on the steroid scaffold were designed and synthesized as promising dual tyrosyl-DNA phosphodiesterase 1 and 2 (TDP1 and TDP2) inhibitors, which are potential targets to potentiate topoisomerase poison antitumor therapy. The methyl esters of DCA derivatives with benzothiazole or benzimidazole moieties at C-3 demonstrated promising inhibitory activity in vitro against TDP1 with IC50 values in the submicromolar range. Furthermore, methyl esters 4d-e, as well as their acid counterparts 3d-e, inhibited the phosphodiesterase activity of both TDP1 and TDP2. The combinations of compounds 3d-e and 4d-e with low-toxic concentrations of antitumor drugs topotecan and etoposide showed significantly greater cytotoxicity than the compounds alone. The docking of the derivatives into the binding sites of TDP1 and TDP2 predicted plausible binding modes of the DCA derivatives.


Asunto(s)
Inhibidores de Fosfodiesterasa , Hidrolasas Diéster Fosfóricas , Inhibidores de Fosfodiesterasa/química , Hidrolasas Diéster Fosfóricas/metabolismo , Modelos Moleculares , Ácido Desoxicólico/farmacología , Relación Estructura-Actividad
8.
Curr Issues Mol Biol ; 45(3): 2230-2247, 2023 Mar 08.
Artículo en Inglés | MEDLINE | ID: mdl-36975514

RESUMEN

Metabolic syndrome is a complex of abnormalities involving impaired glucose and lipid metabolism, which needs effective pharmacotherapy. One way to reduce lipid and glucose levels associated with this pathology is the simultaneous activation of nuclear PPAR-alpha and gamma. For this purpose, we synthesized a number of potential agonists based on the pharmacophore fragment of glitazars with the inclusion of mono- or diterpenic moiety in the molecular structure. The study of their pharmacological activity in mice with obesity and type 2 diabetes mellitus (C57Bl/6Ay) revealed one substance that was capable of reducing the triglyceride levels in the liver and adipose tissue of mice by enhancing their catabolism and expressing a hypoglycemic effect connected with the sensitization of mice tissue to insulin. It has also been shown to have no toxic effects on the liver.

9.
Int J Mol Sci ; 24(2)2023 Jan 04.
Artículo en Inglés | MEDLINE | ID: mdl-36674499

RESUMEN

The Bdnf (brain-derived neurotrophic factor) gene contains eight regulatory exons (I-VIII) alternatively spliced to the protein-coding exon IX. Only exons I, II, IV, and VI are relatively well studied. The BDNF system and brain serotonergic system are tightly interconnected and associated with aggression. The benzopentathiepine TC-2153 affects both systems and exerts antiaggressive action. Our aim was to evaluate the effects of TC-2153 on the Bdnf exons I-IX's expressions and serotonin receptors' mRNA levels in the brain of rats featuring high aggression toward humans (aggressive) or its absence (tame). Aggressive and tame adult male rats were treated once with vehicle or 10 or 20 mg/kg of TC-2153. mRNA was quantified in the cortex, hippocampus, hypothalamus, and midbrain with real-time PCR. Selective breeding for high aggression or its absence affected the serotonin receptors' and Bdnf exons' transcripts differentially, depending on the genotype (strain) and brain region. TC-2153 had comprehensive effects on the Bdnf exons' expressions. The main trend was downregulation in the hypothalamus and midbrain. TC-2153 increased 5-HT1B receptor hypothalamusc mRNA expression. For the first time, an influence of TC-2153 on the expressions of Bdnf regulatory exons and the 5-HT1B receptor was shown, as was an association between Bdnf regulatory exons and fear-induced aggression involving genetic predisposition.


Asunto(s)
Factor Neurotrófico Derivado del Encéfalo , Receptor de Serotonina 5-HT1B , Humanos , Ratas , Animales , Masculino , Factor Neurotrófico Derivado del Encéfalo/metabolismo , Receptor de Serotonina 5-HT1B/genética , Receptor de Serotonina 5-HT1B/metabolismo , Encéfalo/metabolismo , Miedo/fisiología , ARN Mensajero/análisis , Hipocampo/metabolismo , Agresión/fisiología
10.
Int J Mol Sci ; 24(6)2023 Mar 17.
Artículo en Inglés | MEDLINE | ID: mdl-36982848

RESUMEN

Tyrosyl-DNA phosphodiesterase 1 (TDP1) is an important repair enzyme that removes various covalent adducts from the 3' end of DNA. Particularly, covalent complexes of topoisomerase 1 (TOP1) with DNA stabilized by DNA damage or by various chemical agents are an examples of such adducts. Anticancer drugs such as the TOP1 poisons topotecan and irinotecan are responsible for the stabilization of these complexes. TDP1 neutralizes the effect of these anticancer drugs, eliminating the DNA adducts. Therefore, the inhibition of TDP1 can sensitize tumor cells to the action of TOP1 poisons. This review contains information about methods for determining the TDP1 activity, as well as describing the inhibitors of these enzyme derivatives of natural biologically active substances, such as aminoglycosides, nucleosides, polyphenolic compounds, and terpenoids. Data on the efficiency of combined inhibition of TOP1 and TDP1 in vitro and in vivo are presented.


Asunto(s)
Antineoplásicos , Productos Biológicos , Productos Biológicos/farmacología , Hidrolasas Diéster Fosfóricas/metabolismo , Enzimas Reparadoras del ADN/genética , Antineoplásicos/farmacología , Antineoplásicos/química , ADN-Topoisomerasas de Tipo I/metabolismo , Reparación del ADN , ADN
11.
Int J Mol Sci ; 24(4)2023 Feb 14.
Artículo en Inglés | MEDLINE | ID: mdl-36835244

RESUMEN

Tyrosyl-DNA-phosphodiesterase 1 (TDP1) is a promising target for antitumor therapy; the use of TDP1 inhibitors with a topoisomerase 1 poison such as topotecan is a potential combination therapy. In this work, a novel series of 3,5-disubstituted thiazolidine-2,4-diones was synthesized and tested against TDP1. The screening revealed some active compounds with IC50 values less than 5 µM. Interestingly, compounds 20d and 21d were the most active, with IC50 values in the submicromolar concentration range. None of the compounds showed cytotoxicity against HCT-116 (colon carcinoma) and MRC-5 (human lung fibroblasts) cell lines in the 1-100 µM concentration range. Finally, this class of compounds did not sensitize cancer cells to the cytotoxic effect of topotecan.


Asunto(s)
Inhibidores de Fosfodiesterasa , Hidrolasas Diéster Fosfóricas , Tiazolidinedionas , Humanos , Modelos Moleculares , Monoterpenos/farmacología , Inhibidores de Fosfodiesterasa/farmacología , Hidrolasas Diéster Fosfóricas/metabolismo , Topotecan/farmacología , Tiazolidinedionas/farmacología
12.
Int J Mol Sci ; 24(9)2023 Apr 28.
Artículo en Inglés | MEDLINE | ID: mdl-37175725

RESUMEN

Free fatty acid receptor-1 (FFAR1) agonists are promising candidates for therapy of type 2 diabetes because of their ability to normalize blood sugar levels during hyperglycemia without the risk of hypoglycemia. Previously, we synthesized compound QS-528, a FFA1 receptor agonist with a hypoglycemic effect in C57BL/6NCrl mice. In the present work, structural analogs of QS-528 based on (hydroxyphenyl)propanoic acid bearing a bornyl fragment in its structure were synthesized. The seven novel compounds synthesized were structural isomers of compound QS-528, varying the positions of the substituents in the aromatic fragments as well as the configuration of the asymmetric center in the bornyl moiety. The studied compounds were shown to have the ability to activate FFAR1 at a concentration of 10 µM. The cytotoxicity of the compounds as well as their effect on glucose uptake in HepG2 cells were studied. The synthesized compounds were found to increase glucose uptake by cells and have no cytotoxic effect. Two compounds, based on the meta-substituted phenylpropanoic acid, 3-(3-(4-(((1R,2R,4R)-1,7,7-trimethylbicyclo-[2.2.1]heptan-2-ylamino)methyl)benzyloxy)phenyl)propanoic acid and 3-(3-(3-(((1R,2R,4R)-1,7,7-trimethylbicyclo [2.2.1]heptan-2-ylamino)methyl)benzyloxy)phenyl)propanoic acid, were shown to have a pronounced hypoglycemic effect in the oral glucose tolerance test with CD-1 mice.


Asunto(s)
Diabetes Mellitus Tipo 2 , Hipoglucemiantes , Ratones , Animales , Hipoglucemiantes/química , Diabetes Mellitus Tipo 2/tratamiento farmacológico , Propionatos/farmacología , Propionatos/química , Ratones Endogámicos C57BL , Receptores Acoplados a Proteínas G/agonistas , Glucosa , Relación Estructura-Actividad
13.
Int J Mol Sci ; 24(16)2023 Aug 18.
Artículo en Inglés | MEDLINE | ID: mdl-37629115

RESUMEN

Respiratory syncytial virus (RSV) is known to cause annual epidemics of respiratory infections; however, the lack of specific treatment options for this disease poses a challenge. In light of this, there has been a concerted effort to identify small molecules that can effectively combat RSV. This article focuses on the mechanism of action of compound K142, which was identified as a primary screening leader in the earlier stages of the project. The research conducted demonstrates that K142 significantly reduces the intensity of virus penetration into the cells, as well as the formation of syncytia from infected cells. These findings show that the compound's interaction with the surface proteins of RSV is a key factor in its antiviral activity. Furthermore, pharmacological modeling supports that K142 effectively interacts with the F-protein. However, in vivo studies have shown only weak antiviral activity against RSV infection, with a slight decrease in viral load observed in lung tissues. As a result, there is a need to enhance the bioavailability or antiviral properties of this compound. Based on these findings, we hypothesize that further modifications of the compound under study could potentially increase its antiviral activity.


Asunto(s)
Infecciones por Virus Sincitial Respiratorio , Virus Sincitial Respiratorio Humano , Infecciones del Sistema Respiratorio , Humanos , Infecciones por Virus Sincitial Respiratorio/tratamiento farmacológico , Antivirales/farmacología , Disponibilidad Biológica
14.
Int J Mol Sci ; 24(6)2023 Mar 07.
Artículo en Inglés | MEDLINE | ID: mdl-36982223

RESUMEN

Topoisomerase 1 (TOP1) is an enzyme that regulates DNA topology and is essential for replication, recombination, and other processes. The normal TOP1 catalytic cycle involves the formation of a short-lived covalent complex with the 3' end of DNA (TOP1 cleavage complex, TOP1cc), which can be stabilized, resulting in cell death. This fact substantiates the effectiveness of anticancer drugs-TOP1 poisons, such as topotecan, that block the relegation of DNA and fix TOP1cc. Tyrosyl-DNA phosphodiesterase 1 (TDP1) is able to eliminate TOP1cc. Thus, TDP1 interferes with the action of topotecan. Poly(ADP-ribose) polymerase 1 (PARP1) is a key regulator of many processes in the cell, such as maintaining the integrity of the genome, regulation of the cell cycle, cell death, and others. PARP1 also controls the repair of TOP1cc. We performed a transcriptomic analysis of wild type and PARP1 knockout HEK293A cells treated with topotecan and TDP1 inhibitor OL9-119 alone and in combination. The largest number of differentially expressed genes (DEGs, about 4000 both up- and down-regulated genes) was found in knockout cells. Topotecan and OL9-119 treatment elicited significantly fewer DEGs in WT cells and negligible DEGs in PARP1-KO cells. A significant part of the changes caused by PARP1-KO affected the synthesis and processing of proteins. Differences under the action of treatment with TOP1 or TDP1 inhibitors alone were found in the signaling pathways for the development of cancer, DNA repair, and the proteasome. The drug combination resulted in DEGs in the ribosome, proteasome, spliceosome, and oxidative phosphorylation pathways.


Asunto(s)
Hidrolasas Diéster Fosfóricas , Topotecan , Sistemas CRISPR-Cas , ADN , Reparación del ADN , ADN-Topoisomerasas de Tipo I/genética , ADN-Topoisomerasas de Tipo I/metabolismo , Esterasas/metabolismo , Hidrolasas Diéster Fosfóricas/metabolismo , Complejo de la Endopetidasa Proteasomal/metabolismo , Topotecan/farmacología , Transcriptoma , Poli(ADP-Ribosa) Polimerasa-1/metabolismo
15.
Int J Mol Sci ; 24(11)2023 May 23.
Artículo en Inglés | MEDLINE | ID: mdl-37298106

RESUMEN

Tyrosyl-DNA-phosphodiesterase 1 (TDP1) is an important enzyme in the DNA repair system. The ability of the enzyme to repair DNA damage induced by a topoisomerase 1 poison such as the anticancer drug topotecan makes TDP1 a promising target for complex antitumor therapy. In this work, a set of new 5-hydroxycoumarin derivatives containing monoterpene moieties was synthesized. It was shown that most of the conjugates synthesized demonstrated high inhibitory properties against TDP1 with an IC50 in low micromolar or nanomolar ranges. Geraniol derivative 33a was the most potent inhibitor with IC50 130 nM. Docking the ligands to TDP1 predicted a good fit with the catalytic pocket blocking access to it. The conjugates used in non-toxic concentration increased cytotoxicity of topotecan against HeLa cancer cell line but not against conditionally normal HEK 293A cells. Thus, a new structural series of TDP1 inhibitors, which are able to sensitize cancer cells to the topotecan cytotoxic effect has been discovered.


Asunto(s)
Antineoplásicos , Topotecan , Humanos , Topotecan/farmacología , Inhibidores de Fosfodiesterasa/farmacología , Inhibidores de Fosfodiesterasa/química , Relación Estructura-Actividad , Hidrolasas Diéster Fosfóricas/metabolismo , Antineoplásicos/farmacología , Antineoplásicos/química , Línea Celular Tumoral
16.
Molecules ; 28(21)2023 Oct 27.
Artículo en Inglés | MEDLINE | ID: mdl-37959723

RESUMEN

Two approaches to the synthesis of para-menthene epoxide ((1S,5S,6R)-4) are developed. The first approach includes a reaction between chlorohydrin 7 and NaH in THF. The second involves the formation of epoxide in the reaction of corresponding diacetate 6 with sodium tert-butoxide. One possible mechanism of this reaction is proposed to explain unexpected outcomes in the regio- and stereospecificity of epoxide (1S,5S,6R)-4 formation. The epoxide ring in (1S,5S,6R)-4 is then opened by various S- and O-nucleophiles. This series of reactions allows for the stereoselective synthesis of diverse derivatives of the monoterpenoid Prottremine 1, a compound known for its antiparkinsonian activity, including promising antiparkinsonian properties.

17.
Molecules ; 28(6)2023 Mar 15.
Artículo en Inglés | MEDLINE | ID: mdl-36985645

RESUMEN

Respiratory syncytial virus (RSV) causes annual epidemics of respiratory infection. Usually harmless to adults, the RSV infection can be dangerous to children under 3 years of age and elderly people over 65 years of age, often causing serious problems, even death. At present, there are no vaccines and specific chemotherapeutic agents for the treatment of this disease, so the search for low-molecular weight compounds to combat RSV is a challenge. In this work, we have shown, for the first time, that monoterpene-substituted arylcoumarins are efficient RSV replication inhibitors at low micromolar concentrations. The most active compound has a selectivity index of about 200 and acts most effectively at the early stages of infection. The F protein of RSV is a potential target for these compounds, which is also confirmed by molecular docking and molecular dynamics simulation data.


Asunto(s)
Infecciones por Virus Sincitial Respiratorio , Virus Sincitial Respiratorio Humano , Niño , Humanos , Preescolar , Anciano , Simulación del Acoplamiento Molecular , Anticuerpos Antivirales , Proteínas Virales de Fusión , Infecciones por Virus Sincitial Respiratorio/tratamiento farmacológico , Replicación Viral
18.
Bioorg Med Chem Lett ; 55: 128465, 2022 01 01.
Artículo en Inglés | MEDLINE | ID: mdl-34808389

RESUMEN

This article describes the synthesis and antiviral activity evaluation of new substituted 1,2,4-oxadiazoles containing a bicyclic substituent at position 5 of the heterocycle and O-acylated amidoximes as precursors for their synthesis. New compounds were obtained from the (+)-camphor derivative (+)-ketopinic acid. The chemical library was tested in vitro for cytotoxicity against the MDCK cell line and for antiviral activity against influenza viruses of H1N1 and H7N9 subtypes. The synthesised compounds exhibited high virus-inhibiting activity against the H1N1 influenza virus. Some synthesised compounds were also active against the influenza virus of a different antigenic subtype: H7N9. The mechanism of the virus-inhibiting activity of these compounds is based on their interference with the fusion activity of viral hemagglutinin (HA). No interference with the receptor-binding activity of HA has been demonstrated. According to molecular docking results, the selective antiviral activity of O-acylated amidoximes and 1,2,4-oxadiazoles is associated with their structural features. O-Acylated amidoximes are likely more complementary to the binding site located at the site of the fusion peptide, and 1,2,4-oxadiazoles are more complimentary to the site located at the site of proteolysis. Significant differences in the amino acid residues of the binding sites of HA's of different types allow us to explain the selective antiviral activity of the compounds under study.


Asunto(s)
Antivirales/farmacología , Hidrocarburos Aromáticos con Puentes/farmacología , Subtipo H1N1 del Virus de la Influenza A/efectos de los fármacos , Subtipo H7N9 del Virus de la Influenza A/efectos de los fármacos , Cetonas/farmacología , Oxadiazoles/farmacología , Oximas/farmacología , Acilación , Antivirales/síntesis química , Antivirales/química , Hidrocarburos Aromáticos con Puentes/química , Relación Dosis-Respuesta a Droga , Cetonas/química , Pruebas de Sensibilidad Microbiana , Estructura Molecular , Oxadiazoles/síntesis química , Oxadiazoles/química , Oximas/síntesis química , Oximas/química , Relación Estructura-Actividad
19.
Bioorg Med Chem Lett ; 73: 128909, 2022 10 01.
Artículo en Inglés | MEDLINE | ID: mdl-35907608

RESUMEN

Tyrosyl-DNA phosphodiesterase 1(TDP1) is a promising target for a new therapy in oncological disease as an adjunct to topoisomerase 1 (TOP1) drugs. In this paper, novel thiazolidin-4-one derivatives with a benzyl and monoterpene substituents were synthesized. Compounds with a monoterpene fragment attached via a phenyloxy linker were active against TDP1 with IC50 values in the 1 ÷ 3 µM range, while direct attachment of monoterpene moiety to the thiazolidin-4-one fragment had no activity. Molecular modelling predicted two plausible binding modes of the active compounds both effectively blocking access to the catalytic site of TDP. At non-toxic concentrations the active ligands potentiated the efficacy of the TOP1 poison topotecan in human cervical cancer HeLa cells, but not in non-cancerous HEK293A cells.


Asunto(s)
Inhibidores de Fosfodiesterasa , Hidrolasas Diéster Fosfóricas , Esterasas/metabolismo , Células HeLa , Humanos , Monoterpenos/farmacología , Inhibidores de Fosfodiesterasa/farmacología , Hidrolasas Diéster Fosfóricas/metabolismo , Relación Estructura-Actividad
20.
Int J Mol Sci ; 23(11)2022 Jun 01.
Artículo en Inglés | MEDLINE | ID: mdl-35682893

RESUMEN

It is known that epoxide-bearing compounds display pronounced pharmacological activities, and the epoxidation of natural metabolites can be a promising strategy to improve their bioactivity. Here, we report the design, synthesis and evaluation of biological properties of αO-SM and ßO-SM, novel epoxides of soloxolone methyl (SM), a cyanoenone-bearing derivative of 18ßH-glycyrrhetinic acid. We demonstrated that the replacement of a double-bound within the cyanoenone pharmacophore group of SM with α- and ß-epoxide moieties did not abrogate the high antitumor and anti-inflammatory potentials of the triterpenoid. It was found that novel SM epoxides induced the death of tumor cells at low micromolar concentrations (IC50(24h) = 0.7-4.1 µM) via the induction of mitochondrial-mediated apoptosis, reinforced intracellular accumulation of doxorubicin in B16 melanoma cells, probably by direct interaction with key drug efflux pumps (P-glycoprotein, MRP1, MXR1), and the suppressed pro-metastatic phenotype of B16 cells, effectively inhibiting their metastasis in a murine model. Moreover, αO-SM and ßO-SM hampered macrophage functionality in vitro (motility, NO production) and significantly suppressed carrageenan-induced peritonitis in vivo. Furthermore, the effect of the stereoisomerism of SM epoxides on the mentioned bioactivities and toxic profiles of these compounds in vivo were evaluated. Considering the comparable antitumor and anti-inflammatory effects of SM epoxides with SM and reference drugs (dacarbazine, dexamethasone), αO-SM and ßO-SM can be considered novel promising antitumor and anti-inflammatory drug candidates.


Asunto(s)
Antineoplásicos , Ácido Glicirretínico , Neoplasias , Animales , Antiinflamatorios/farmacología , Antineoplásicos/farmacología , Compuestos Epoxi/farmacología , Óxido de Etileno , Ácido Glicirretínico/farmacología , Ratones , Estereoisomerismo
SELECCIÓN DE REFERENCIAS
DETALLE DE LA BÚSQUEDA