Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 7 de 7
Filtrar
Más filtros

Bases de datos
Asunto principal
Tipo del documento
Asunto de la revista
Intervalo de año de publicación
1.
J Phys Chem A ; 127(12): 2717-2730, 2023 Mar 30.
Artículo en Inglés | MEDLINE | ID: mdl-36893328

RESUMEN

The S0-S1 absorption spectra of anthracene (C14H10), 9-methylanthracene (C15H12), and 2-methylanthracene (C15H12) are measured in the ultraviolet region between 330 and 375 nm (26,666 to 30,303 cm-1) with cavity ring-down spectroscopy in supersonic free-jet expansions of argon. The associated vibronic band systems and their spectroscopic assignments are discussed and compared to previous studies performed using fluorescence excitation and dispersed fluorescence techniques. Density functional theory (DFT) calculations were carried out to study the structures and evaluate the vibrational transitions of the ground and excited states. Time-dependent DFT calculations of the first electronic excited states and Franck-Condon factor calculations were carried out to assist in the assignment of the experimentally measured vibronic bands. The vibronic spectra obtained in absorption agree well with fluorescence excitation spectra in terms of peak positions but exhibit different relative band intensities. We find a very good match between experimentally obtained vibronic line positions and the peak positions of the quantum chemically calculated Franck-Condon excitation lines.

2.
Artículo en Inglés | MEDLINE | ID: mdl-34121770

RESUMEN

The "science-softCon UV/Vis+ Photochemistry Database" (www.photochemistry.org) is a large and comprehensive collection of EUV-VUV-UV-Vis-NIR spectral data and other photochemical information assembled from published peer-reviewed papers. The database contains photochemical data including absorption, fluorescence, photoelectron, and circular and linear dichroism spectra, as well as quantum yields and photolysis related data that are critically needed in many scientific disciplines. This manuscript gives an outline regarding the structure and content of the "science-softCon UV/Vis+ Photochemistry Database". The accurate and reliable molecular level information provided in this database is fundamental in nature and helps in proceeding further to understand photon, electron and ion induced chemistry of molecules of interest not only in spectroscopy, astrochemistry, astrophysics, Earth and planetary sciences, environmental chemistry, plasma physics, combustion chemistry but also in applied fields such as medical diagnostics, pharmaceutical sciences, biochemistry, agriculture, and catalysis. In order to illustrate this, we illustrate the use of the UV/Vis+ Photochemistry Database in four different fields of scientific endeavor.

3.
Langmuir ; 30(44): 13217-27, 2014 Nov 11.
Artículo en Inglés | MEDLINE | ID: mdl-24851720

RESUMEN

The OREOcube (ORganics Exposure in Orbit cube) experiment on the International Space Station (ISS) will investigate the effects of solar and cosmic radiation on organic thin films supported on inorganic substrates. Probing the kinetics of structural changes and photomodulated organic-inorganic interactions with real-time in situ UV-visible spectroscopy, this experiment will investigate the role played by solid mineral surfaces in the (photo)chemical evolution, transport, and distribution of organics in our solar system and beyond. In preparation for the OREOcube ISS experiment, we report here laboratory measurements of the photostability of thin films of the 9,10-anthraquinone derivative anthrarufin (51 nm thick) layered upon ultrathin films of iron oxides magnetite and hematite (4 nm thick), as well as supported directly on fused silica. During irradiation with UV and visible light simulating the photon flux and spectral distribution on the surface of Mars, anthrarufin/iron oxide bilayer thin films were exposed to CO2 (800 Pa), the main constituent (and pressure) of the martian atmosphere. The time-dependent photodegradation of anthrarufin thin films revealed the inhibition of degradation by both types of underlying iron oxides relative to anthrarufin on bare fused silica. Interactions between the organic and inorganic thin films, apparent in spectral shifts of the anthrarufin bands, are consistent with presumed free-electron quenching of semiquinone anion radicals by the iron oxide layers, effectively protecting the organic compound from photodegradation. Combining such in situ real-time kinetic measurements of thin films in future space exposure experiments on the ISS with postflight sample return and analysis will provide time-course studies complemented by in-depth chemical analysis. This will facilitate the characterization and modeling of the chemistry of organic species associated with mineral surfaces in astrobiological contexts.

4.
Astron Astrophys ; 6062017 Oct.
Artículo en Inglés | MEDLINE | ID: mdl-29151608

RESUMEN

The carriers of the diffuse interstellar bands (DIBs) are largely unidentified molecules ubiquitously present in the interstellar medium (ISM). After decades of study, two strong and possibly three weak near-infrared DIBs have recently been attributed to the [Formula: see text] fullerene based on observational and laboratory measurements. There is great promise for the identification of the over 400 other known DIBs, as this result could provide chemical hints towards other possible carriers. In an effort to systematically study the properties of the DIB carriers, we have initiated a new large-scale observational survey: the ESO Diffuse Interstellar Bands Large Exploration Survey (EDIBLES). The main objective is to build on and extend existing DIB surveys to make a major step forward in characterising the physical and chemical conditions for a statistically significant sample of interstellar lines-of-sight, with the goal to reverse-engineer key molecular properties of the DIB carriers. EDIBLES is a filler Large Programme using the Ultraviolet and Visual Echelle Spectrograph at the Very Large Telescope at Paranal, Chile. It is designed to provide an observationally unbiased view of the presence and behaviour of the DIBs towards early-spectral type stars whose lines-of-sight probe the diffuse-to-translucent ISM. Such a complete dataset will provide a deep census of the atomic and molecular content, physical conditions, chemical abundances and elemental depletion levels for each sightline. Achieving these goals requires a homogeneous set of high-quality data in terms of resolution (R ~ 70 000 - 100 000), sensitivity (S/N up to 1000 per resolution element), and spectral coverage (305-1042 nm), as well as a large sample size (100+ sightlines). In this first paper the goals, objectives and methodology of the EDIBLES programme are described and an initial assessment of the data is provided.

5.
Astrobiology ; 12(9): 841-53, 2012 Sep.
Artículo en Inglés | MEDLINE | ID: mdl-22984872

RESUMEN

We report the first science results from the Space Environment Viability of Organics (SEVO) payload aboard the Organism/Organic Exposure to Orbital Stresses (O/OREOS) free-flying nanosatellite, which completed its nominal spaceflight mission in May 2011 but continues to acquire data biweekly. The SEVO payload integrates a compact UV-visible-NIR spectrometer, utilizing the Sun as its light source, with a 24-cell sample carousel that houses four classes of vacuum-deposited organic thin films: polycyclic aromatic hydrocarbon (PAH), amino acid, metalloporphyrin, and quinone. The organic films are enclosed in hermetically sealed sample cells that contain one of four astrobiologically relevant microenvironments. Results are reported in this paper for the first 309 days of the mission, during which the samples were exposed for ∼2210 h to direct solar illumination (∼1080 kJ/cm(2) of solar energy over the 124-2600 nm range). Transmission spectra (200-1000 nm) were recorded for each film, at first daily and subsequently every 15 days, along with a solar spectrum and the dark response of the detector array. Results presented here include eight preflight and 16 in-flight spectra of eight SEVO sample cells. Spectra from the PAH thin film in a water-vapor-containing microenvironment indicate measurable change due to solar irradiation in orbit, while three other nominally water-free microenvironments show no appreciable change. The quinone anthrarufin showed high photostability and no significant spectroscopically measurable change in any of the four microenvironments during the same period. The SEVO experiment provides the first in situ real-time analysis of the photostability of organic compounds and biomarkers in orbit.


Asunto(s)
Vuelo Espacial , Aminoácidos/química , Benzoquinonas/química , Medio Ambiente Extraterrestre , Metaloporfirinas/química , Hidrocarburos Policíclicos Aromáticos/análisis , Análisis Espectral , Rayos Ultravioleta
6.
J Chem Phys ; 123(1): 014312, 2005 Jul 01.
Artículo en Inglés | MEDLINE | ID: mdl-16035840

RESUMEN

Gas-phase cavity ring-down spectroscopy of jet-cooled benzo[ghi]perylene (C22H12) in the 26 950-28 600-cm(-1) spectral range is reported for the first time. This study is part of our extensive laboratory astrophysics program for the study of interstellar polycyclic aromatic hydrocarbons. The observed spectrum shows an intermediate level structure and significant broadening and is associated with the vibronically coupled S1(1A1)<--S0(1A1) and S2(1B1)<--S0(1A1) electronic transitions. Time-dependent density-functional calculations were performed to calculate the energetics, vibrational frequencies, and normal coordinates of the S1 and S2 states. A simple vibronic model was employed to account for the vibronic interaction between the vibronic levels of the S1 and S2 states. The calculated vibronic spectrum is found to be in good agreement with the experimental spectrum.

7.
J Chem Phys ; 122(8): 84318, 2005 Feb 22.
Artículo en Inglés | MEDLINE | ID: mdl-15836050

RESUMEN

As part of our long-term program to test the diffuse interstellar band-polycyclic aromatic hydrocarbon hypothesis, we have investigated the S(1)<--S(0) electronic transition of neutral perylene (C(20)H(12)) in a combined experimental and theoretical study. Jet-cooled perylene was prepared with a pulsed discharge slit nozzle and detected by cavity ring-down spectroscopy. A number of vibronic features were observed in the 24 000-24 900 cm(-1) spectral range. Density functional and ab initio calculations were performed to determine the geometries, harmonic vibrational frequencies, and normal coordinates of both the S(0) and S(1) electronic states. A rotational temperature of 52+/-5 K was derived from a rotational contour analysis of the vibronic band associated with the 0-0 transition. A Franck-Condon treatment was carried out to calculate the vibronic spectrum of the S(1)<--S(0) transition. A good agreement was found between the calculated and the experimental spectra. A vibrational assignment is proposed and six normal modes are identified. The contribution of neutral compact polycyclic aromatic hydrocarbons to the diffuse interstellar bands is briefly discussed.

SELECCIÓN DE REFERENCIAS
DETALLE DE LA BÚSQUEDA