Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 2 de 2
Filtrar
Más filtros

Bases de datos
Tipo del documento
Intervalo de año de publicación
1.
Sci Adv ; 9(48): eadj2801, 2023 12.
Artículo en Inglés | MEDLINE | ID: mdl-38039360

RESUMEN

The analysis of proteins in the gas phase benefits from detectors that exhibit high efficiency and precise spatial resolution. Although modern secondary electron multipliers already address numerous analytical requirements, additional methods are desired for macromolecules at energies lower than currently used in post-acceleration detection. Previous studies have proven the sensitivity of superconducting detectors to high-energy particles in time-of-flight mass spectrometry. Here, we demonstrate that superconducting nanowire detectors are exceptionally well suited for quadrupole mass spectrometry and exhibit an outstanding quantum yield at low-impact energies. At energies as low as 100 eV, the sensitivity of these detectors surpasses conventional ion detectors by three orders of magnitude, and they offer the possibility to discriminate molecules by their impact energy and charge. We demonstrate three developments with these compact and sensitive devices, the recording of 2D ion beam profiles, photochemistry experiments in the gas phase, and advanced cryogenic electronics to pave the way toward highly integrated detectors.

2.
Nano Converg ; 7(1): 38, 2020 Dec 10.
Artículo en Inglés | MEDLINE | ID: mdl-33301056

RESUMEN

Upper gastrointestinal (GI) carcinomas are characterized as one of the deadliest cancer types with the highest recurrence rates. Their treatment is challenging due to late diagnosis, early metastasis formation, resistance to systemic therapy and complicated surgeries performed in poorly accessible locations. Current cancer medication face deficiencies such as high toxicity and systemic side-effects due to the non-specific distribution of the drug agent. Nanomedicine has the potential to offer sophisticated therapeutic possibilities through adjusted delivery systems. This review aims to provide an overview of novel approaches and perspectives on nanoparticle (NP) drug delivery systems for gastrointestinal carcinomas. Present regimen for the treatment of upper GI carcinomas are described prior to detailing various NP drug delivery formulations and their current and potential role in GI cancer theranostics with a specific emphasis on targeted nanodelivery systems. To date, only a handful of NP systems have met the standard of care requirements for GI carcinoma patients. However, an increasing number of studies provide evidence supporting NP-based diagnostic and therapeutic tools. Future development and strategic use of NP-based drug formulations will be a hallmark in the treatment of various cancers. This article seeks to highlight the exciting potential of novel NPs for targeted cancer therapy in GI carcinomas and thus provide motivation for further research in this field.

SELECCIÓN DE REFERENCIAS
DETALLE DE LA BÚSQUEDA