RESUMEN
Because the enzymatic regulation of muscle triglyceride metabolism is poorly understood we explored the character and activation of neutral lipase in muscle. Western blotting of isolated rat muscle fibers demonstrated expression of hormone-sensitive lipase (HSL). In incubated soleus muscle epinephrine increased neutral lipase activity by beta-adrenergic mechanisms involving cyclic AMP-dependent protein kinase (PKA). The increase was paralleled by an increase in glycogen phosphorylase activity and could be abolished by antiserum against HSL. Electrical stimulation caused a transient increase in activity of both neutral lipase and glycogen phosphorylase. The increase in lipase activity during contractions was not influenced by sympathectomy or propranolol. Training diminished the epinephrine induced lipase activation in muscle but enhanced the activation as well as the overall concentration of lipase in adipose tissue. In agreement with the in vitro findings, in adrenalectomized patients an increase in muscle neutral lipase activity was found at the end of prolonged exercise only if epinephrine was infused. In accordance with feedforward regulation of substrate mobilization in exercise, our studies have shown that HSL is present in skeletal muscle cells and is stimulated in parallel with glycogen phosphorylase by both epinephrine and contractions. HSL adapts differently to training in muscle compared with adipose tissue.
Asunto(s)
Músculo Esquelético/enzimología , Esterol Esterasa/metabolismo , Triglicéridos/metabolismo , Animales , Estimulación Eléctrica , Ejercicio Físico , Humanos , Condicionamiento Físico Animal , RatasRESUMEN
The enzymic regulation of triacylglycerol breakdown in skeletal muscle is poorly understood. Western blotting of muscle fibres isolated by collagenase treatment or after freeze-drying demonstrated the presence of immunoreactive hormone-sensitive lipase (HSL), with the concentrations in soleus and diaphragm being more than four times the concentrations in extensor digitorum longus and epitrochlearis muscles. Neutral lipase activity determined under conditions optimal for HSL varied directly with immunoreactivity. Expressed relative to triacylglycerol content, neutral lipase activity in soleus muscle was about 10 times that in epididymal adipose tissue. In incubated soleus muscle, both neutral lipase activity against triacylglycerol (but not against a diacylglycerol analogue) and glycogen phosphorylase activity increased in response to adrenaline (epinephrine). The lipase activation was completely inhibited by anti-HSL antibody and by propranolol. The effect of adrenaline could be mimicked by incubation of crude supernatant from control muscle with the catalytic subunit of cAMP-dependent protein kinase, while no effect of the kinase subunit was seen with supernatant from adrenaline-treated muscle. The results indicate that HSL is present in skeletal muscle and is stimulated by adrenaline via beta-adrenergic activation of cAMP-dependent protein kinase. The concentration of HSL is higher in oxidative than in glycolytic muscle, and the enzyme is activated in parallel with glycogen phosphorylase.