Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 2 de 2
Filtrar
Más filtros

Bases de datos
Tipo del documento
País de afiliación
Intervalo de año de publicación
1.
PLoS One ; 17(3): e0254270, 2022.
Artículo en Inglés | MEDLINE | ID: mdl-35316277

RESUMEN

Chicken is the first sequenced avian that has a crucial role in human life for its meat and egg production. Because of various metabolic disorders, study the metabolism of chicken cell is important. Herein, the first genome-scale metabolic model of a chicken cell named iES1300, consists of 2427 reactions, 2569 metabolites, and 1300 genes, was reconstructed manually based on KEGG, BiGG, CHEBI, UNIPROT, REACTOME, and MetaNetX databases. Interactions of metabolic genes for growth were examined for E. coli, S. cerevisiae, human, and chicken metabolic models. The results indicated robustness to genetic manipulation for iES1300 similar to the results for human. iES1300 was integrated with transcriptomics data using algorithms and Principal Component Analysis was applied to compare context-specific models of the normal, tumor, lean and fat cell lines. It was found that the normal model has notable metabolic flexibility in the utilization of various metabolic pathways, especially in metabolic pathways of the carbohydrate metabolism, compared to the others. It was also concluded that the fat and tumor models have similar growth metabolisms and the lean chicken model has a more active lipid and carbohydrate metabolism.


Asunto(s)
Redes y Vías Metabólicas , Neoplasias , Animales , Biomarcadores/metabolismo , Pollos/genética , Pollos/metabolismo , Escherichia coli/genética , Redes y Vías Metabólicas/genética , Modelos Biológicos , Saccharomyces cerevisiae/metabolismo
2.
OMICS ; 26(12): 671-682, 2022 12.
Artículo en Inglés | MEDLINE | ID: mdl-36508280

RESUMEN

Genome-scale metabolic modeling (GEM) is one of the key approaches to unpack cancer metabolism and for discovery of new drug targets. In this study, we report the Transcriptional Regulated Flux Balance Analysis-CORE (TRFBA-), an algorithm for GEM using key growth-correlated reactions using hepatocellular carcinoma (HCC), an important global health burden, as a case study. We generated a HepG2 cell-specific GEM by integrating this cell line transcriptomic data with a generic human metabolic model to forecast potential drug targets for HCC. A total of 108 essential genes for growth were predicted by the TRFBA-CORE. These genes were enriched for metabolic pathways involved in cholesterol, sterol, and steroid biosynthesis. Furthermore, we silenced a predicted essential gene, 11-beta dehydrogenase hydroxysteroid type 2 (HSD11B2), in HepG2 cells resulting in a reduction in cell viability. To further identify novel potential drug targets in HCC, we examined the effect of nine drugs targeting the essential genes, and observed that most drugs inhibited the growth of HepG2 cells. Some of these drugs in this model performed better than Sorafenib, the first-line therapeutic against HCC. A HepG2 cell-specific GEM highlights sterol metabolism to be essential for cell growth. HSD11B2 downregulation results in lower cell growth. Most of the compounds, selected by drug repurposing approach, show a significant inhibitory effect on cell growth in a wide range of concentrations. These findings offer new molecular leads for drug discovery for hepatic cancer while also illustrating the importance of GEM and drug repurposing in cancer therapeutics innovation.


Asunto(s)
Carcinoma Hepatocelular , Neoplasias Hepáticas , Humanos , Carcinoma Hepatocelular/tratamiento farmacológico , Carcinoma Hepatocelular/genética , Carcinoma Hepatocelular/metabolismo , Neoplasias Hepáticas/tratamiento farmacológico , Neoplasias Hepáticas/genética , Neoplasias Hepáticas/metabolismo , Sorafenib/farmacología , Sorafenib/uso terapéutico , Células Hep G2 , Proliferación Celular/genética , Línea Celular Tumoral , Esteroles/farmacología , Esteroles/uso terapéutico
SELECCIÓN DE REFERENCIAS
DETALLE DE LA BÚSQUEDA