RESUMEN
Ultraviolet (UV) exposure and atmospheric pollution are both independently implicated in skin diseases such as cancer and premature aging. UVA wavelengths, which penetrate in the deep layers of the skin dermis, exert their toxicity mainly through chromophore photosensitization reactions. Benzo[a]pyrene (BaP), the most abundant polycyclic aromatic hydrocarbon originating from the incomplete combustion of organic matter, could act as a chromophore and absorb UVA. We and other groups have previously shown that BaP and UVA synergize their toxicity in skin cells, which leads to important oxidation. Even if mitochondria alterations have been related to premature skin aging and other skin disorders, no studies have focused on the synergy between UV exposure and pollution on mitochondria. Our study aims to investigate the combined effect of UVA and BaP specifically on mitochondria in order to assess the effect on mitochondrial membranes and the consequences on mitochondrial activity. We show that BaP has a strong affinity for mitochondria and that this affinity leads to an important induction of lipid peroxidation and membrane disruption when exposed to UVA. Co-exposure to UVA and BaP synergizes their toxicity to negatively impact mitochondrial membrane potential, mitochondrial metabolism and the mitochondrial network. Altogether, our results highlight the implication of mitochondria in the synergistic toxicity of pollution and UV exposure and the potential of this toxicity on skin integrity.
Asunto(s)
Benzo(a)pireno , Peroxidación de Lípido , Mitocondrias , Rayos Ultravioleta , Rayos Ultravioleta/efectos adversos , Mitocondrias/efectos de los fármacos , Mitocondrias/metabolismo , Mitocondrias/efectos de la radiación , Benzo(a)pireno/toxicidad , Humanos , Peroxidación de Lípido/efectos de los fármacos , Potencial de la Membrana Mitocondrial/efectos de los fármacos , Piel/efectos de los fármacos , Piel/efectos de la radiación , Piel/metabolismoRESUMEN
Lecithin retinol acyltransferase (LRAT) is involved in the visual cycle where it catalyzes the formation of all-trans retinyl ester. The mouse animal model has been widely used to study LRAT. Primary sequence alignment shows 80% identity and 90% similarity between human and mouse LRAT. However, human LRAT has a proline at position 173 (hLRAT (P173)) while an arginine can be found at this position for the mouse protein (mLRAT (R173)). Moreover, residue 173 is important for the human protein since a substitution mutation of this residue to a leucine (P173L-hLRAT) caused night blindness in a patient. The present study was thus undertaken to determine whether mouse and human LRAT have a similar enzymatic activity, structure and substrate binding affinity using a truncated form of LRAT (tLRAT). The enzymatic activity and binding affinity to the substrate, all-trans retinol, of mtLRAT (R173) were found to be 2.7- and 3.9-fold lower, respectively, than that of htLRAT (P173). Moreover, the enzymatic activity of P173L-htLRAT is 6.3-fold lower compared to that of htLRAT (P173). Furthermore, a significant difference was observed between the intrinsic fluorescence emission as well as between the circular dichroism spectra of mtLRAT (R173) and htLRAT (P173). In addition, mtLRAT proteins are less thermostable than htLRAT proteins, which suggests that structural differences exist between the mouse and human proteins. Altogether, these data strongly suggest that the much lower catalytic activity of mtLRAT (R173) compared to that of htLRAT (P173) mostly results from differences between their structure, predominantly revealed by their dissimilar thermal stability, as well as their efficiency to bind all-trans retinol. Therefore, conclusions regarding the behavior of human LRAT based on measurements performed with mouse LRAT must be made with caution. Also, the much lower enzymatic activity of P173L-htLRAT compared to that of htLRAT (P173) might explain the night blindness of a patient carrying this mutation.
Asunto(s)
Aciltransferasas/química , Aciltransferasas/metabolismo , Aciltransferasas/genética , Animales , Activación Enzimática , Humanos , Ratones , Unión Proteica , Conformación Proteica , Especificidad por SustratoRESUMEN
Protein import into the Leishmania glycosome requires docking of the cargo-loaded peroxin 5 (PEX5) receptor to the peroxin 14 (PEX14) bound to the glycosome surface. To examine the LdPEX14-membrane interaction, we purified L. donovani promastigote glycosomes and determined the phospholipid and fatty acid composition. These membranes contained predominately phosphatidylethanolamine, phosphatidylcholine, and phosphatidylglycerol (PG) modified primarily with C18 and C22 unsaturated fatty acid. Using large unilamellar vesicles (LUVs) with a lipid composition mimicking the glycosomal membrane in combination with sucrose density centrifugation and fluorescence-activated cell sorting technique, we established that the LdPEX14 membrane-binding activity was dependent on a predicted transmembrane helix found within residues 149-179. Monolayer experiments showed that the incorporation of PG and phospholipids with unsaturated fatty acids, which increase membrane fluidity and favor a liquid expanded phase, facilitated the penetration of LdPEX14 into biological membranes. Moreover, we demonstrated that the binding of LdPEX5 receptor or LdPEX5-PTS1 receptor-cargo complex was contingent on the presence of LdPEX14 at the surface of LUVs.
Asunto(s)
Leishmania donovani/metabolismo , Microcuerpos/metabolismo , Receptor de la Señal 1 de Direccionamiento al Peroxisoma/química , Fosfatidilgliceroles/química , Proteínas Protozoarias/química , Secuencia de Aminoácidos , Sitios de Unión , Materiales Biomiméticos/química , Materiales Biomiméticos/metabolismo , Fraccionamiento Celular , Colesterol/química , Colesterol/metabolismo , Expresión Génica , Interacciones Hidrofóbicas e Hidrofílicas , Leishmania donovani/genética , Fluidez de la Membrana , Microcuerpos/química , Receptor de la Señal 1 de Direccionamiento al Peroxisoma/genética , Receptor de la Señal 1 de Direccionamiento al Peroxisoma/metabolismo , Fosfatidilcolinas/química , Fosfatidilcolinas/metabolismo , Fosfatidiletanolaminas/química , Fosfatidiletanolaminas/metabolismo , Fosfatidilgliceroles/metabolismo , Fosfatidilinositoles/química , Fosfatidilinositoles/metabolismo , Unión Proteica , Conformación Proteica en Hélice alfa , Dominios y Motivos de Interacción de Proteínas , Proteínas Protozoarias/genética , Proteínas Protozoarias/metabolismo , Proteínas Recombinantes/química , Proteínas Recombinantes/genética , Proteínas Recombinantes/metabolismo , Alineación de Secuencia , Liposomas Unilamelares/química , Liposomas Unilamelares/metabolismoRESUMEN
Purification of recombinant proteins is often achieved using a purification tag which can be located either at the N- or C-terminus of a passenger protein of interest. Many purification tags exist and their advantages and limitations are well documented. However, designing fusion proteins can be a challenging task to get a fully expressed, soluble and highly purified passenger protein. Besides, there is a lack of systematic studies on the use of a single tag versus combined tags and on the effect of the position of the tags in the construct. In the present study, 9 different fusion proteins were expressed in Escherichia coli using some of the most commonly used purification tags: maltose-binding protein (MBP), glutathione S-transferase (GST) and polyHis tag. The expression and purification of N-terminus single-tagged fusion proteins (MBP, GST and polyHis) and fusion proteins with combined tags at different positions have been tested. Both the identity of the tag(s) and its position were found to have a strong effect on the expression, solubility and purification yields of the fusion proteins. Consequently, the different fusion proteins assayed have shown varying expression, solubility and purification yields, which were also dependent on the passenger protein. Therefore, there is a compelling need to design various fusion proteins with different single or combined tags to identify optimized constructions allowing to achieve high levels of expression, solubility and purification of the passenger protein.
Asunto(s)
Proteínas Adaptadoras Transductoras de Señales/aislamiento & purificación , Glutatión Transferasa/aislamiento & purificación , Histidina/aislamiento & purificación , Proteínas de Unión a Maltosa/aislamiento & purificación , Proteínas de la Membrana/aislamiento & purificación , Oligopéptidos/aislamiento & purificación , Ingeniería de Proteínas/métodos , Proteínas Recombinantes de Fusión/aislamiento & purificación , Proteínas Adaptadoras Transductoras de Señales/biosíntesis , Proteínas Adaptadoras Transductoras de Señales/genética , Secuencia de Bases , Biotecnología/métodos , Cromatografía de Afinidad/métodos , Clonación Molecular , Escherichia coli/genética , Escherichia coli/metabolismo , Expresión Génica , Vectores Genéticos/química , Vectores Genéticos/metabolismo , Glutatión Transferasa/genética , Glutatión Transferasa/metabolismo , Histidina/genética , Histidina/metabolismo , Humanos , Proteínas de Unión a Maltosa/genética , Proteínas de Unión a Maltosa/metabolismo , Proteínas de la Membrana/biosíntesis , Proteínas de la Membrana/genética , Oligopéptidos/genética , Oligopéptidos/metabolismo , Proteínas Recombinantes de Fusión/biosíntesis , Proteínas Recombinantes de Fusión/genética , SolubilidadRESUMEN
Recoverin is a protein involved in the phototransduction cascade by regulating the activity of rhodopsin kinase through a calcium-dependent binding process at the surface of rod outer segment disk membranes. We have investigated the interaction of recoverin with zwitterionic phosphatidylcholine bilayers, the major lipid component of the rod outer segment disk membranes, using both 31P and 19F solid-state nuclear magnetic resonance (NMR) and infrared spectroscopy. In particular, several novel approaches have been used, such as the centerband-only detection of exchange (CODEX) technique to investigate lipid lateral diffusion and 19F NMR to probe the environment of the recoverin myristoyl group. The results reveal that the lipid bilayer organization is not disturbed by recoverin. Non-myristoylated recoverin induces a small increase in lipid hydration that appears to be correlated with an increased lipid lateral diffusion. The thermal stability of recoverin remains similar in the absence or presence of lipids and Ca2+. Fluorine atoms have been strategically introduced at positions 4 or 12 on the myristoyl moiety of recoverin to, respectively, probe its behavior in the interfacial and more hydrophobic regions of the membrane. 19F NMR results allow the observation of the calcium-myristoyl switch, the myristoyl group experiencing two different environments in the absence of Ca2+ and the immobilization of the recoverin myristoyl moiety in phosphatidylcholine membranes in the presence of Ca2+.
Asunto(s)
Membrana Celular/metabolismo , Recoverina/metabolismo , Calcio/metabolismo , Difusión , Metabolismo de los Lípidos , Espectroscopía de Resonancia Magnética , Modelos Moleculares , Ácido Mirístico/metabolismo , Unión Proteica , Conformación Proteica , Estabilidad Proteica , Recoverina/química , Espectroscopía Infrarroja por Transformada de Fourier , TemperaturaRESUMEN
Recoverin is the only protein for which the phenomenon of calcium-myristoyl switch has been demonstrated without ambiguity. It is located in rod disk membranes where the highest content in polyunsaturated lipid acyl chains can be found. However, although essential to better understand the inactivation of the phototransduction process, the role of membrane fluidity on recoverin recruitment is unclear. We have therefore investigated the immobilization of the recoverin myristoyl moiety in the presence of phosphocholine bilayers using 2H solid-state NMR spectroscopy. Several lipids with different acyl chains were selected to investigate model membranes characterized by different fluidity. Immobilization of the recoverin myristoyl moiety was successfully observed but only in the presence of calcium and in specific lipid disordered states, showing that an optimal fluidity is required for recoverin immobilization.
Asunto(s)
Calcio/química , Membrana Dobles de Lípidos/química , Ácido Mirístico/química , Recoverina/química , Tensoactivos/química , Dimiristoilfosfatidilcolina/química , Difenilhexatrieno/química , Espectroscopía de Resonancia Magnética , Fluidez de la Membrana , Fosfatidilcolinas/química , Fosfatidilgliceroles/químicaRESUMEN
Recoverin is a protein involved in the phototransduction cascade by regulating the activity of rhodopsin kinase through a calcium-dependent binding process at the surface of rod outer segment disk membranes. Understanding how calcium modulates these interactions and how it interacts with anionic lipid membranes is necessary to gain insights into the function of recoverin. In this work, infrared spectroscopy allowed us to show that the availability of calcium to recoverin is modulated by the presence of complexes involving phosphatidylglycerol (PG), which in turn regulates its interactions with this negatively charged lipid. Calcium can indeed be sequestered into strongly bound complexes with PG and is thus sparingly available to recoverin. The thermal stability of recoverin then decreases, which results in weakened interactions with PG. By contrast, when calcium is fully available to recoverin, the protein is thermally stable, indicating that it binds two calcium ions, which results in favorable interactions with negatively charged lipids. Consequently, the protein induces an increase in the chain-melting phase transition temperature of PG, which is indicative of an enhanced lipid chain packing resulting from the peripheral location of the protein. The secondary structure of recoverin is not affected by its interactions with anionic membrane lipids. Similar results have been obtained with saturated and unsaturated anionic lipids. This work shows that the recruitment of recoverin at the surface of anionic lipid membranes is dependent on the availability of calcium.
Asunto(s)
Calcio/metabolismo , Membrana Celular/metabolismo , Lípidos de la Membrana/metabolismo , Fosfatidilgliceroles/metabolismo , Recoverina/metabolismo , Humanos , Unión Proteica , Conformación Proteica , Recoverina/química , Espectrofotometría InfrarrojaRESUMEN
Retinol dehydrogenase 11 (RDH11) has been postulated to be anchored to membranes by means of its N-terminal segment in retinal pigment epithelial (RPE) cells where it participates to the visual cycle. The analysis of the primary sequence of RDH11 revealed that its N-terminal hydrophobic segment could be involved in the anchoring of this enzyme to membranes. However, no information is yet available on the properties of this N-terminal segment to support this role. The secondary structure and membrane binding of two N-terminal peptides of RDH11 with different lengths have thus been investigated to provide this information. Online tools allowed predicting an α-helical secondary structure for both peptides. Infrared spectroscopy and circular dichroism have shown that the α-helix of the Long-peptide (35 amino acids) is longer and more rigid than that of the Short-peptide (25 amino acids) regardless of the type of solvent. Langmuir monolayers have been used as a model membrane to study lipid-peptide interactions. Values of maximum insertion pressure and synergy suggested a preferential binding of the Long-peptide to lipids with a phosphoethanolamine polar head group, which are abundant in the RPE. Furthermore, infrared spectroscopy in monolayers has shown that the α-helical structure of the Long-peptide is more stable in the presence of saturated phospholipids whereas the structure of the Short-peptide is mainly disordered. Altogether, the present data demonstrate that the α-helical hydrophobic core of the N-terminal segment of RDH11 displays properties typical of transmembrane domains, in agreement with its postulated role in the membrane anchoring of this protein.
Asunto(s)
Membrana Dobles de Lípidos/química , Lípidos de la Membrana/química , Oxidorreductasas/química , Fosfolípidos/química , Estructura Secundaria de Proteína , Secuencia de Aminoácidos , Dicroismo Circular , Humanos , Interacciones Hidrofóbicas e Hidrofílicas , Membrana Dobles de Lípidos/metabolismo , Lípidos de la Membrana/metabolismo , Datos de Secuencia Molecular , Oxidorreductasas/metabolismo , Fosfatidilcolinas/química , Fosfatidilcolinas/metabolismo , Fosfatidiletanolaminas/química , Fosfatidiletanolaminas/metabolismo , Fosfatidilserinas/química , Fosfatidilserinas/metabolismo , Fosfolípidos/metabolismo , Unión Proteica , Solventes/química , Espectrofotometría InfrarrojaRESUMEN
Recoverin undergoes a calcium-myristoyl switch during visual phototransduction. Indeed, calcium binding by recoverin results in the extrusion of its myristoyl group, which allows its membrane binding. However, the contribution of particular lipids and of specific amino acids of recoverin in its membrane binding has not yet been demonstrated. In the present work, the affinity of recoverin for the negatively charged phosphatidylserine has been clearly shown to be governed by a cluster of positively charged residues located in its N-terminal segment. Moreover, the calcium-myristoyl switch of recoverin was only observed upon binding onto monolayers of phosphatidylserine and not in the case of other anionic phospholipids. Fluorescence microscopy experiments with mixed lipid monolayers allowed confirmation of the specific binding of myristoylated recoverin to phosphatidylserine, whereas the extent of penetration of recoverin in phosphatidylserine monolayers was estimated by ellipsometry. A model has thus been proposed for the membrane binding of myristoylated recoverin in the presence of calcium.
RESUMEN
Retinitis pigmentosa 2 (RP2) is an ubiquitary protein of 350 residues. The N-terminus of RP2 contains putative sites of myristoylation and palmitoylation. The dually acylated protein is predominantly localized to the plasma membrane. However, clinically occurring substitution mutations of RP2 in photoreceptors lead to the expression of a nonacylated protein, which was shown to be misrouted to intracellular organelles using different cell lines. However, the parameters responsible for the modulation of the membrane binding of nonacylated RP2 (naRP2) are still largely unknown. The maximal insertion pressure of naRP2 has thus been determined after its injection into the subphase underneath monolayers of phospholipids, which are typical of photoreceptor membranes. These data demonstrated that naRP2 shows a preferential binding to saturated phospholipid monolayers. Moreover, polarization modulation infrared reflection absorption spectroscopy has allowed comparison of the secondary structure of this protein in solution and upon binding to phospholipid monolayers. In addition, simulations of these spectra have allowed to determine that the ß-helix of naRP2 has an orientation of 60° with respect to the normal, which remains unchanged regardless of the type of phospholipid. Finally, ellipsometric measurements of naRP2 demonstrated that its particular affinity for saturated phospholipids can be explained by its larger extent of insertion in this phospholipid monolayer compared to that in polyunsaturated phospholipid monolayers.
Asunto(s)
Proteínas del Ojo/química , Péptidos y Proteínas de Señalización Intracelular/química , Lipoilación , Proteínas de la Membrana/química , Membranas Artificiales , Fosfolípidos/química , Acilación , Sustitución de Aminoácidos , Proteínas del Ojo/genética , Proteínas del Ojo/metabolismo , Proteínas de Unión al GTP , Humanos , Péptidos y Proteínas de Señalización Intracelular/genética , Péptidos y Proteínas de Señalización Intracelular/metabolismo , Proteínas de la Membrana/genética , Proteínas de la Membrana/metabolismo , Mutación Missense , Fosfolípidos/genética , Fosfolípidos/metabolismo , Estructura Secundaria de ProteínaRESUMEN
Lecithin:retinol acyltransferase (LRAT) plays a major role in the vertebrate visual cycle. Indeed, it is responsible for the esterification of all-trans retinol into all-trans retinyl esters, which can then be stored in microsomes or further metabolized to produce the chromophore of rhodopsin. In the present study, a detailed characterization of the enzymatic properties of truncated LRAT (tLRAT) has been achieved using in vitro assay conditions. A much larger tLRAT activity has been obtained compared to previous reports and to an enzyme with a similar activity. In addition, tLRAT is able to hydrolyze phospholipids bearing different chain lengths with a preference for micellar aggregated substrates. It therefore presents an interfacial activation property, which is typical of classical phospholipases. Furthermore, given that stability is a very important quality of an enzyme, the influence of different parameters on the activity and stability of tLRAT has thus been studied in detail. For example, storage buffer has a strong effect on tLRAT activity and high enzyme stability has been observed at room temperature. The thermostability of tLRAT has also been investigated using circular dichroism and infrared spectroscopy. A decrease in the activity of tLRAT was observed beyond 70°C, accompanied by a modification of its secondary structure, i.e. a decrease of its α-helical content and the appearance of unordered structures and aggregated ß-sheets. Nevertheless, residual activity could still be observed after heating tLRAT up to 100°C. The results of this study highly improved our understanding of this enzyme.
Asunto(s)
Aciltransferasas/química , Lecitinas/química , Éteres Fosfolípidos/química , Vitamina A/química , Aciltransferasas/genética , Dicroismo Circular , Escherichia coli/genética , Escherichia coli/metabolismo , Calor , Humanos , Cinética , Micelas , Estabilidad Proteica , Estructura Secundaria de Proteína , Proteínas Recombinantes/química , Proteínas Recombinantes/genética , Espectrofotometría Infrarroja , Especificidad por SustratoRESUMEN
α9ß1 is the most recent addition to the integrin family of membrane receptors and consequently remains the one that is the least characterized. To better understand how transcription of the human gene encoding the α9 subunit is regulated, we cloned the α9 promoter and characterized the regulatory elements that are required to ensure its transcription. Transfection of α9 promoter/CAT plasmids in primary cultured human corneal epithelial cells (HCECs) and uveal melanoma cell lines demonstrated the presence of both negative and positive regulatory elements along the α9 promoter and positioned the basal α9 promoter to within 118 bp from the α9 mRNA start site. In vitro DNaseI footprinting and in vivo ChIP analyses demonstrated the binding of the transcription factors Sp1, c-Myb and NFI to the most upstream α9 negative regulatory element. The transcription factors Sp1 and NFI were found to bind the basal α9 promoter individually but Sp1 binding clearly predominates when both transcription factors are present in the same extract. Suppression of Sp1 expression through RNAi also caused a dramatic reduction in the expression of the α9 gene. Most of all, addition of tenascin-C (TNC), the ligand of α9ß1, to the tissue culture plates prior to seeding HCECs increased α9 transcription whereas it simultaneously decreased expression of the α5 integrin subunit gene. This dual regulatory action of TNC on the transcription of the α9 and α5 genes suggests that both these integrins must work together to appropriately regulate cell adhesion, migration and differentiation that are hallmarks of tissue wound healing.
Asunto(s)
Epitelio Corneal/citología , Regulación de la Expresión Génica/fisiología , Cadenas alfa de Integrinas/fisiología , Regiones Promotoras Genéticas/fisiología , Células Cultivadas , Células Epiteliales/metabolismo , Epitelio Corneal/metabolismo , Fibroblastos/metabolismo , Perfilación de la Expresión Génica , Humanos , Cadenas alfa de Integrinas/genética , Factores de Transcripción NFI/metabolismo , Factor de Transcripción Sp1/metabolismo , Factor de Transcripción Sp3/metabolismo , TransfecciónRESUMEN
Phototransduction cascade takes place in disc membranes of photoreceptor cells. Following its activation by light, rhodopsin activates the G-protein transducin causing the dissociation of its GTP-bound α-subunit, which in turn activates phosphodiesterase 6 (PDE6) leading to the hyperpolarization of photoreceptor cells. PDE6 must then be inactivated to return to the dark state. This is achieved by a protein complex which is presumably anchored to photoreceptor disc membranes by means of the transmembrane C-terminal segment of RGS9-1-Anchor Protein (R9AP). Information on the secondary structure and membrane binding properties of the C-terminal segment of R9AP is not yet available to further support its role in the membrane anchoring of this protein. In the present study, circular dichroism and infrared spectroscopy measurements have allowed us to determine that the C-terminal segment of human and bovine R9AP adopts an α-helical structure in solution. Moreover, this C-terminal segment has shown affinity for most of the phospholipids typical of photoreceptor membranes. In fact, the physical state and the type of phospholipid as well as electrostatic interactions influence the binding of the human and bovine peptides to phospholipid monolayers. In addition, these measurements revealed that the human peptide has a high affinity for saturated phosphocholine, which may suggest a possible localization of R9AP in photoreceptor microdomains. Accordingly, infrared spectroscopy measurements have allowed determining that the C-terminal segment of R9AP adopts an ordered α-helical structure in the presence of saturated phospholipid monolayers. Altogether, these data are consistent with the typical α-helical secondary structure and behavior observed for transmembrane segments and with the proposed role of membrane anchoring of the C-terminal segment of human and bovine R9AP.
Asunto(s)
Proteínas Adaptadoras Transductoras de Señales/química , Proteínas Adaptadoras Transductoras de Señales/metabolismo , Lípidos de la Membrana/química , Lípidos de la Membrana/metabolismo , Proteínas de la Membrana/química , Proteínas de la Membrana/metabolismo , Fragmentos de Péptidos/metabolismo , Secuencia de Aminoácidos , Animales , Bovinos , Humanos , Modelos Moleculares , Datos de Secuencia Molecular , Fragmentos de Péptidos/química , Fosfolípidos/metabolismo , Unión Proteica , Estructura Secundaria de ProteínaRESUMEN
To evaluate the structural stability of recoverin, a member of the neuronal calcium sensor family, the effect of temperature, myristoylation, and calcium:protein molar ratio on its secondary structure has been studied by transmission infrared spectroscopy. On the basis of the data, the protein predominantly adopts α-helical structures (â¼50-55%) with turns, unordered structures, and ß-sheets at 25 °C. The data show no significant impact of the presence of calcium and myristoylation on secondary structure. It is found that, in the absence of calcium, recoverin denatures and self-aggregates while being heated, with the formation of intermolecular antiparallel ß-sheets. The nonmyristoylated protein (Rec-nMyr) exhibits a lower temperature threshold of aggregation and a higher intermolecular ß-sheet content at 65 °C than the myristoylated protein (Rec-Myr). The former thus appears to be less thermally stable than the latter. In the presence of excess calcium ions (calcium:protein ratio of 10), the protein is thermally stable up to 65 °C with no significant conformational change, the presence of the myristoyl chain having no effect on the thermal stability of recoverin under these conditions. A decrease in the thermal stability of recoverin is observed as the calcium:protein molar ratio decreases, with Rec-nMyr being less stable than Rec-Myr. The data overall suggest that a minimal number of coordinated calcium ions is necessary to fully stabilize the structure of recoverin and that, when bound to the membrane, i.e., when the myristoyl chain protrudes from the interior pocket, recoverin should be more stable than in a Ca-free solution, i.e., when the myristoyl chain is sequestered in the interior.
Asunto(s)
Calcio/metabolismo , Ácido Mirístico/metabolismo , Estabilidad Proteica , Recoverina/química , Proteínas de Unión al Calcio/química , Estructura Secundaria de Proteína , Recoverina/metabolismo , Espectrofotometría Infrarroja , TemperaturaRESUMEN
Retinoid metabolism is important for many physiological functions, such as differenciation, growth, and vision. In the visual context, after the absorption of light in rod photoreceptors by the visual pigment rhodopsin, 11-cis retinal is isomerized to all-trans retinal. This retinoid subsequently undergoes a series of modifications during the visual cycle through a cascade of reactions occurring in photoreceptors and in the retinal pigment epithelium. Retinol dehydrogenases (RDHs) are enzymes responsible for crucial steps of this visual cycle. They belong to a large family of proteins designated as short-chain dehydrogenases/reductases. The structure of these RDHs has been predicted using modern bioinformatics tools, which allowed to propose models with similar structures including a common Rossman fold. These enzymes undergo oxidoreduction reactions, whose direction is dictated by the preference and concentration of their individual cofactor (NAD(H)/NADP(H)). This review presents the current state of knowledge on functional and structural features of RDHs involved in the visual cycle as well as knockout models. RDHs are described as integral or peripheral enzymes. A topology model of the membrane binding of these RDHs via their N- and (or) C-terminal domain has been proposed on the basis of their individual properties. Membrane binding is a crucial issue for these enzymes because of the high hydrophobicity of their retinoid substrates.
Asunto(s)
Oxidorreductasas de Alcohol/química , Membrana Celular/enzimología , Modelos Moleculares , Pliegue de Proteína , Epitelio Pigmentado de la Retina/enzimología , Oxidorreductasas de Alcohol/genética , Oxidorreductasas de Alcohol/metabolismo , Humanos , Interacciones Hidrofóbicas e Hidrofílicas , Estructura Terciaria de Proteína , Rodopsina/química , Rodopsina/genética , Rodopsina/metabolismoRESUMEN
A Ca(2+) -responsive artificial selenoenzyme was constructed by computational design and engineering of recoverin with the active center of glutathione peroxidase (GPx). By combining the recognition capacity for the glutathione (GSH) substrate and the steric orientation of the catalytic selenium moiety, the engineered selenium-containing recoverin exhibits high GPx activity for the catalyzed reduction of H2 O2 by glutathione (GSH). Moreover, the engineered selenoenzyme can be switched on/off by Ca(2+) -induced allosterism of the protein recoverin. This artificial selenoenzyme also displays excellent antioxidant ability when it was evaluated using a mitochondrial oxidative damage model, showing great potential for controlled catalysis in biomedical applications.
Asunto(s)
Antioxidantes/química , Calcio/química , Glutatión Peroxidasa/química , Recoverina/química , Selenocisteína/química , Antioxidantes/farmacología , Sitios de Unión , Catálisis , Peróxido de Hidrógeno/química , Selenio/químicaRESUMEN
Lecithin:retinol acyltransferase (LRAT) is a 230 amino acid membrane-associated protein which catalyzes the esterification of all-trans-retinol into all-trans-retinyl ester. A truncated form of LRAT (tLRAT), which contains the residues required for catalysis but which is lacking the N- and C-terminal hydrophobic segments, was produced to study its membrane binding properties. Measurements of the maximum insertion pressure of tLRAT, which is higher than the estimated lateral pressure of membranes, and the positive synergy factor a argue in favor of a strong binding of tLRAT to phospholipid monolayers. Moreover, the binding, secondary structure and orientation of the peptides corresponding to its N- and C-terminal hydrophobic segments of LRAT have been studied by circular dichroism and polarization-modulation infrared reflection absorption spectroscopy in monolayers. The results show that these peptides spontaneously bind to lipid monolayers and adopt an α-helical secondary structure. On the basis of these data, a new membrane topology model of LRAT is proposed where its N- and C-terminal segments allow to anchor this protein to the lipid bilayer.
Asunto(s)
Aciltransferasas/metabolismo , Lecitinas , Lípidos/química , Proteínas de la Membrana/química , Aciltransferasas/química , Modelos Biológicos , Péptidos , Unión Proteica , Estructura Secundaria de Proteína , Liposomas Unilamelares/metabolismoRESUMEN
Langmuir monolayers were used to characterize the influence of the physical state of phospholipid monolayers on the binding of protein Retinis Pigmentosa 2 (RP2). The binding parameters of RP2 (maximum insertion pressure (MIP), synergy and ΔΠ(0)) in monolayers were thus analyzed in the presence of phospholipids bearing increasing fatty acyl chain lengths at temperatures where their liquid-expanded (LE), liquid-condensed (LC), or solid-condensed (SC) states can be individually observed. The data show that a larger value of synergy is observed in the LC/SC states than in the LE state, independent of the fatty acyl chain length of phospholipids. Moreover, both the MIP and the ΔΠ(0) increase with the fatty acyl chain length when phospholipids are in the LC/SC state, whereas those binding parameters remain almost unchanged when phospholipids are in the LE state. This effect of the phospholipid physical state on the binding of RP2 was further demonstrated by measurements performed in the presence of a phospholipid monolayer showing a phase transition from the LE to the LC state at room temperature. The data collected are showing that very similar values of MIP but very different values of synergy and ΔΠ(0) are obtained in the LE (below the phase transition) and LC (above the phase transition) states. In addition, the binding parameters of RP2 in the LE (below the phase transition) as well as in the LC (above the phase transition) states were found to be indistinguishable from those where single LC and LE states are respectively observed. The preference of RP2 for binding phospholipids in the LC state was then confirmed by the observation of a large modification of the shape of the LC domains in the phase transition. Therefore, protein binding parameters can be strongly influenced by the physical state of phospholipid monolayers. Moreover, measurements performed with the α/ß domain of RP2 strongly suggest that the ß helix of RP2 plays a major role in the preferential binding of this protein to phospholipids in the LC state.
Asunto(s)
Proteínas de la Membrana/metabolismo , Fosfolípidos/metabolismo , Fenómenos Físicos , 1,2-Dipalmitoilfosfatidilcolina/química , 1,2-Dipalmitoilfosfatidilcolina/metabolismo , Adsorción , Proteínas de la Membrana/química , Fosfolípidos/química , Unión Proteica , Estructura Terciaria de ProteínaRESUMEN
Many proteins are modified by the covalent addition of different types of lipids, such as myristoylation, palmitoylation and prenylation. Lipidation is expected to promote membrane association of proteins. Visual phototransduction involves many lipid-modified proteins. The G-Protein-coupled receptor of rod photoreceptors, rhodopsin, is inactivated by G-Protein-coupled Receptor Kinase 1 (GRK1). The C-terminus of GRK1 is farnesylated and its truncation has been shown to result in a very high decrease of its enzymatic activity, most likely because of the loss of its membrane localization. Little information is available on the membrane binding of GRK1 as well as of most prenylated proteins. Measurements of the membrane binding of the non-farnesylated and farnesylated C-terminal segment of GRK1 were thus performed using lipids typical of those found in rod outer segment disk membranes. Their random coil secondary structure was determined using circular dichroism and infrared spectroscopy. The non-farnesylated C-terminal segment of GRK1 has no surface activity. In contrast, the farnesylated C-terminal segment of GRK1 shows a particularly strong binding to lipid monolayers bearing at least one unsaturated fatty acyl chain. No binding is observed in the presence of monolayers of saturated phospholipids, in agreement with the low affinity of farnesylated Ras proteins for lipids in the liquid-ordered state. Altogether, these data demonstrate that the farnesyl group of the C-terminal segment of GRK1 is mandatory for its membrane binding, which is favored by particular lipids or lipid mixtures. This information will also be useful for the understanding of the membrane binding of other prenylated proteins.
Asunto(s)
Proteínas de Unión al GTP , Fosfolípidos , Proteínas de Unión al GTP/metabolismo , Fosfolípidos/metabolismo , Prenilación , Estructura Secundaria de ProteínaRESUMEN
The visual photoreception takes place in the retina, where specialized rod and cone photoreceptor cells are located. The rod outer segments contain a stack of 500-2,000 sealed membrane disks. Rhodopsin is the visual pigment located in rod outer segment disks, it is a member of the G-protein-coupled receptor (GPCR) superfamily, an important group of membrane proteins responsible for the majority of physiological responses to stimuli such as light, hormones, peptides, etc. Alongside rhodopsin, peripherin/Rom proteins located in the disk rims are thought to be responsible for disk morphology. Here we describe the supramolecular structure of rod outer segment disk membranes and the spatial organization of rhodopsin and peripherin/Rom molecules. Using atomic force microscopy operated in physiological buffer solution, we found that rhodopsin is loosely packed in the central region of the disks, in average about 26 000 molecules covering approximately one third of the disk surface. Peripherin/Rom proteins form dense assemblies in the rim region. A protein-free lipid bilayer girdle separates the rhodopsin and peripherin/Rom domains. The described supramolecular assembly of rhodospin, peripherin/Rom and lipids in native rod outer segment disks is consistent with the functional requirements of photoreception.