Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 20 de 206
Filtrar
Más filtros

Intervalo de año de publicación
1.
Mol Psychiatry ; 2024 Mar 07.
Artículo en Inglés | MEDLINE | ID: mdl-38454085

RESUMEN

Adult cytogenesis, the continuous generation of newly-born neurons (neurogenesis) and glial cells (gliogenesis) throughout life, is highly impaired in several neuropsychiatric disorders, such as Major Depressive Disorder (MDD), impacting negatively on cognitive and emotional domains. Despite playing a critical role in brain homeostasis, the importance of gliogenesis has been overlooked, both in healthy and diseased states. To examine the role of newly formed glia, we transplanted Glial Restricted Precursors (GRPs) into the adult hippocampal dentate gyrus (DG), or injected their secreted factors (secretome), into a previously validated transgenic GFAP-tk rat line, in which cytogenesis is transiently compromised. We explored the long-term effects of both treatments on physiological and behavioral outcomes. Grafted GRPs reversed anxiety-like deficits and demonstrated an antidepressant-like effect, while the secretome promoted recovery of only anxiety-like behavior. Furthermore, GRPs elicited a recovery of neurogenic and gliogenic levels in the ventral DG, highlighting the unique involvement of these cells in the regulation of brain cytogenesis. Both GRPs and their secretome induced significant alterations in the DG proteome, directly influencing proteins and pathways related to cytogenesis, regulation of neural plasticity and neuronal development. With this work, we demonstrate a valuable and specific contribution of glial progenitors to normalizing gliogenic levels, rescuing neurogenesis and, importantly, promoting recovery of emotional deficits characteristic of disorders such as MDD.

2.
Neurobiol Dis ; 195: 106500, 2024 Jun 01.
Artículo en Inglés | MEDLINE | ID: mdl-38614275

RESUMEN

Spinal Cord Injury (SCI) disrupts critical autonomic pathways responsible for the regulation of the immune function. Consequently, individuals with SCI often exhibit a spectrum of immune dysfunctions ranging from the development of damaging pro-inflammatory responses to severe immunosuppression. Thus, it is imperative to gain a more comprehensive understanding of the extent and mechanisms through which SCI-induced autonomic dysfunction influences the immune response. In this review, we provide an overview of the anatomical organization and physiology of the autonomic nervous system (ANS), elucidating how SCI impacts its function, with a particular focus on lymphoid organs and immune activity. We highlight recent advances in understanding how intraspinal plasticity that follows SCI may contribute to aberrant autonomic activity in lymphoid organs. Additionally, we discuss how sympathetic mediators released by these neuron terminals affect immune cell function. Finally, we discuss emerging innovative technologies and potential clinical interventions targeting the ANS as a strategy to restore the normal regulation of the immune response in individuals with SCI.


Asunto(s)
Vías Autónomas , Traumatismos de la Médula Espinal , Traumatismos de la Médula Espinal/inmunología , Traumatismos de la Médula Espinal/fisiopatología , Humanos , Animales , Vías Autónomas/inmunología , Sistema Nervioso Autónomo/fisiopatología , Sistema Nervioso Autónomo/inmunología
3.
Cytotherapy ; 26(7): 700-713, 2024 Jul.
Artículo en Inglés | MEDLINE | ID: mdl-38483360

RESUMEN

BACKGROUND AIMS: Parkinson's disease (PD) is the second most common neurodegenerative disorder. The etiology of the disease remains largely unknown, but evidence have suggested that the overexpression and aggregation of alpha-synuclein (α-syn) play key roles in the pathogenesis and progression of PD. Mesenchymal stromal cells (MSCs) have been earning attention in this field, mainly due to their paracrine capacity. The bioactive molecules secreted by MSCs, i.e. their secretome, have been associated with enhanced neuronal survival as well as a strong modulatory capacity of the microenvironments where the disease develops. The selection of the appropriate animal model is crucial in studies of efficacy assessment. Given the involvement of α-syn in the pathogenesis of PD, the evidence generated from the use of animal models that develop a pathologic phenotype due to the action of this protein is extremely valuable. Therefore, in this work, we established an animal model based on the viral vector-mediated overexpression of A53T α-syn and studied the impact of the secretome of bone marrow mesenchymal stromal cells MSC(M) as a therapeutic strategy. METHODS: Adult male rats were subjected to α-syn over expression in the nigrostriatal pathway to model dopaminergic neurodegeneration. The impact of locally administered secretome treatment from MSC(M) was studied. Motor impairments were assessed throughout the study coupled with whole-region (striatum and substantia nigra) confocal microscopy evaluation of histopathological changes associated with dopaminergic neurodegeneration and glial cell reactivity. RESULTS: Ten weeks after lesion induction, the animals received secretome injections in the substantia nigra pars compacta (SNpc) and striatum (STR). The secretome used was produced from bone marrow mesenchymal stromal cells MSC(M) expanded in a spinner flask (SP) system. Nine weeks later, animals that received the viral vector containing the gene for A53T α-syn and treated with vehicle (Neurobasal-A medium) presented dopaminergic cell loss in the SNpc and denervation in the STR. The treatment with secretome significantly reduced the levels of α-syn in the SNpc and protected the dopaminergic neurons (DAn) within the SNpc and STR. CONCLUSIONS: Our results are aligned with previous studies in both α-syn Caenorhabditis elegans models, as well as 6-OHDA rodent model, revealing that secretome exerted a neuroprotective effect. Moreover, these effects were associated with a modulation of microglial reactivity supporting an immunomodulatory role for the factors contained within the secretome. This further supports the development of new studies exploring the effects and the mechanism of action of secretome from MSC(M) against α-syn-induced neurotoxicity.


Asunto(s)
Modelos Animales de Enfermedad , Células Madre Mesenquimatosas , Microglía , Neuroprotección , Enfermedad de Parkinson , alfa-Sinucleína , Animales , Células Madre Mesenquimatosas/metabolismo , alfa-Sinucleína/metabolismo , alfa-Sinucleína/genética , Ratas , Masculino , Microglía/metabolismo , Enfermedad de Parkinson/terapia , Enfermedad de Parkinson/metabolismo , Secretoma/metabolismo , Neuronas Dopaminérgicas/metabolismo , Trasplante de Células Madre Mesenquimatosas/métodos , Células Cultivadas , Humanos
4.
Int J Mol Sci ; 24(9)2023 Apr 22.
Artículo en Inglés | MEDLINE | ID: mdl-37175391

RESUMEN

The regional heterogeneity of microglia was first described a century ago by Pio del Rio Hortega. Currently, new information on microglia heterogeneity throughout central nervous system (CNS) regions is being revealed by high-throughput techniques. It remains unclear whether these spatial specificities translate into different microglial behaviors in vitro. We cultured microglia isolated from the cortex and spinal cord and analyzed the effect of the CNS spatial source on behavior in vitro by applying the same experimental protocol and culture conditions. We analyzed the microglial cell numbers, function, and morphology and found a distinctive in vitro phenotype. We found that microglia were present in higher numbers in the spinal-cord-derived glial cultures, presenting different expressions of inflammatory genes and a lower phagocytosis rate under basal conditions or after activation with LPS and IFN-γ. Morphologically, the cortical microglial cells were more complex and presented longer ramifications, which were also observed in vivo in CX3CR1+/GFP transgenic reporter mice. Collectively, our data demonstrated that microglial behavior in vitro is defined according to specific spatial characteristics acquired by the tissue. Thus, our study highlights the importance of microglia as a source of CNS for in vitro studies.


Asunto(s)
Sistema Nervioso Central , Microglía , Animales , Ratones , Microglía/metabolismo , Neuroglía , Médula Espinal , Fagocitosis/fisiología , Ratones Transgénicos
5.
Med Res Rev ; 42(2): 850-896, 2022 03.
Artículo en Inglés | MEDLINE | ID: mdl-34783046

RESUMEN

The axonal growth-restrictive character of traumatic spinal cord injury (SCI) makes finding a therapeutic strategy a very demanding task, due to the postinjury events impeditive to spontaneous axonal outgrowth and regeneration. Considering SCI pathophysiology complexity, it has been suggested that an effective therapy should tackle all the SCI-related aspects and provide sensory and motor improvement to SCI patients. Thus, the current aim of any therapeutic approach for SCI relies in providing neuroprotection and support neuroregeneration. Acknowledging the current SCI treatment paradigm, cell transplantation is one of the most explored approaches for SCI with mesenchymal stem cells (MSCs) being in the forefront of many of these. Studies showing the beneficial effects of MSC transplantation after SCI have been proposing a paracrine action of these cells on the injured tissues, through the secretion of protective and trophic factors, rather than attributing it to the action of cells itself. This manuscript provides detailed information on the most recent data regarding the neuroregenerative effect of the secretome of MSCs as a cell-free based therapy for SCI. The main challenge of any strategy proposed for SCI treatment relies in obtaining robust preclinical evidence from in vitro and in vivo models, before moving to the clinics, so we have specifically focused on the available vertebrate and mammal models of SCI currently used in research and how can SCI field benefit from them.


Asunto(s)
Trasplante de Células Madre Mesenquimatosas , Traumatismos de la Médula Espinal , Animales , Humanos , Mamíferos , Medicina Regenerativa , Secretoma , Traumatismos de la Médula Espinal/terapia
6.
Am J Pathol ; 191(3): 487-502, 2021 03.
Artículo en Inglés | MEDLINE | ID: mdl-33307037

RESUMEN

Endoplasmic reticulum (ER) stress is shown to promote nucleus pulposus (NP) cell apoptosis and intervertebral disc degeneration. However, little is known about ER stress regulation by the hypoxic disc microenvironment and its contribution to extracellular matrix homeostasis. NP cells were cultured under hypoxia (1% partial pressure of oxygen) to assess ER stress status, and gain-of-function and loss-of-function approaches were used to assess the role of hypoxia-inducible factor (HIF)-1α in this pathway. In addition, the contribution of ER stress induction on the NP cell secretome was assessed by a nontargeted quantitative proteomic analysis by sequential windowed data independent acquisition of the total high-resolution mass spectra-mass spectrometry. NP cells exhibited a lower ER stress burden under hypoxia. Knockdown of HIF-1α increased C/EBP homologous protein, protein kinase RNA-like endoplasmic reticulum kinase (PERK), and activating transcription factor 6 (ATF6) levels, whereas HIF-1α stabilization decreased the expression of ER stress markers Ddit3, Hsp5a, Atf6, and Eif2a. Interestingly, ER stress inducers tunicamycin and thapsigargin induced HIF-1α activity under hypoxia while promoting the unfolded protein response. NP cell secretome analysis demonstrated an impact of ER stress induction on extracellular matrix secretion, with decreases in collagens and cell adhesion-related proteins. Moreover, analysis of transcriptomic data of NP tissues from aged mice and degenerated human discs showed higher levels of unfolded protein response markers and decreased levels of matrix components. Our study shows, for the first time, that hypoxia and HIF-1α attenuate ER stress responses in NP cells, and ER stress promotes inefficient extracellular matrix secretion under hypoxia.


Asunto(s)
Estrés del Retículo Endoplásmico , Proteínas de la Matriz Extracelular/metabolismo , Matriz Extracelular/metabolismo , Subunidad alfa del Factor 1 Inducible por Hipoxia/metabolismo , Hipoxia/fisiopatología , Núcleo Pulposo/patología , Animales , Proteínas de la Matriz Extracelular/genética , Subunidad alfa del Factor 1 Inducible por Hipoxia/genética , Ratones , Ratones Endogámicos C57BL , Núcleo Pulposo/metabolismo , Ratas , Ratas Sprague-Dawley
7.
Int J Mol Sci ; 23(22)2022 Nov 10.
Artículo en Inglés | MEDLINE | ID: mdl-36430308

RESUMEN

Spinal cord injury (SCI) is a disabling condition that disrupts motor, sensory, and autonomic functions. Despite extensive research in the last decades, SCI continues to be a global health priority affecting thousands of individuals every year. The lack of effective therapeutic strategies for patients with SCI reflects its complex pathophysiology that leads to the point of no return in its function repair and regeneration capacity. Recently, however, several studies started to uncover the intricate network of mechanisms involved in SCI leading to the development of new therapeutic approaches. In this work, we present a detailed description of the physiology and anatomy of the spinal cord and the pathophysiology of SCI. Additionally, we provide an overview of different molecular strategies that demonstrate promising potential in the modulation of the secondary injury events that promote neuroprotection or neuroregeneration. We also briefly discuss other emerging therapies, including cell-based therapies, biomaterials, and epidural electric stimulation. A successful therapy might target different pathologic events to control the progression of secondary damage of SCI and promote regeneration leading to functional recovery.


Asunto(s)
Traumatismos de la Médula Espinal , Humanos , Regeneración Nerviosa/fisiología , Recuperación de la Función/fisiología , Neuroprotección
8.
Glia ; 69(3): 513-531, 2021 03.
Artículo en Inglés | MEDLINE | ID: mdl-33052610

RESUMEN

The crosstalk between glial cells and neurons represents an exceptional feature for maintaining the normal function of the central nervous system (CNS). Increasing evidence has revealed the importance of glial progenitor cells in adult neurogenesis, reestablishment of cellular pools, neuroregeneration, and axonal (re)myelination. Several types of glial progenitors have been described, as well as their potentialities for recovering the CNS from certain traumas or pathologies. Among these precursors, glial-restricted precursor cells (GRPs) are considered the earliest glial progenitors and exhibit tripotency for both Type I/II astrocytes and oligodendrocytes. GRPs have been derived from embryos and embryonic stem cells in animal models and have maintained their capacity for self-renewal. Despite the relatively limited knowledge regarding the isolation, characterization, and function of these progenitors, GRPs are promising candidates for transplantation therapy and reestablishment/repair of CNS functions in neurodegenerative and neuropsychiatric disorders, as well as in traumatic injuries. Herein, we review the definition, isolation, characterization and potentialities of GRPs as cell-based therapies in different neurological conditions. We briefly discuss the implications of using GRPs in CNS regenerative medicine and their possible application in a clinical setting. MAIN POINTS: GRPs are progenitors present in the CNS with differentiation potential restricted to the glial lineage. These cells have been employed in the treatment of a myriad of neurodegenerative and traumatic pathologies, accompanied by promising results, herein reviewed.


Asunto(s)
Enfermedades del Sistema Nervioso Central , Neuroglía , Animales , Diferenciación Celular , Enfermedades del Sistema Nervioso Central/terapia , Neuronas , Células Madre
9.
Cytotherapy ; 23(10): 894-901, 2021 10.
Artículo en Inglés | MEDLINE | ID: mdl-34059421

RESUMEN

BACKGROUND AIMS: The capacity of the secretome from bone marrow-derived mesenchymal stem cells (BMSCs) to prevent dopaminergic neuron degeneration caused by overexpression of alpha-synuclein (α-syn) was explored using two Caenorhabditis elegans models of Parkinson's disease (PD). METHODS: First, a more predictive model of PD that overexpresses α-syn in dopamine neurons was subjected to chronic treatment with secretome. This strain displays progressive dopaminergic neurodegeneration that is age-dependent. Following chronic treatment with secretome, the number of intact dopaminergic neurons was determined. Following these initial experiments, a C. elegans strain that overexpresses α-syn in body wall muscle cells was used to determine the impact of hBMSC secretome on α-syn inclusions. Lastly, in silico analysis of the components that constitute the secretome was performed. RESULTS: The human BMSC (hBMSC) secretome induced a neuroprotective effect, leading to reduced dopaminergic neurodegeneration. Moreover, in animals submitted to chronic treatment with secretome, the number of α-syn inclusions was reduced, indicating that the secretome of MSCs was possibly contributing to the degradation of those structures. In silico analysis identified possible suppressors of α-syn proteotoxicity, including growth factors and players in the neuronal protein quality control mechanisms. CONCLUSIONS: The present findings indicate that hBMSC secretome has the potential to be used as a disease-modifying strategy in future PD regenerative medicine approaches.


Asunto(s)
Células Madre Mesenquimatosas , Enfermedad de Parkinson , Animales , Caenorhabditis elegans , Modelos Animales de Enfermedad , Neuronas Dopaminérgicas , Humanos , Enfermedad de Parkinson/terapia , alfa-Sinucleína
10.
Cell Mol Life Sci ; 77(24): 5171-5188, 2020 Dec.
Artículo en Inglés | MEDLINE | ID: mdl-32617639

RESUMEN

Glial cells have been identified more than 100 years ago, and are known to play a key role in the central nervous system (CNS) function. A recent piece of evidence is emerging showing that in addition to the capacity of CNS modulation and homeostasis, glial cells are also being looked like as a promising cell source not only to study CNS pathologies initiation and progression but also to the establishment and development of new therapeutic strategies. Thus, in the present review, we will discuss the current evidence regarding glial cells' contribution to neurodegenerative diseases as Parkinson's disease, providing cellular, molecular, functional, and behavioral data supporting its active role in disease initiation, progression, and treatment. As so, considering their functional relevance, glial cells may be important to the understanding of the underlying mechanisms regarding neuronal-glial networks in neurodegeneration/regeneration processes, which may open new research opportunities for their future use as a target or treatment in human clinical trials.


Asunto(s)
Tratamiento Basado en Trasplante de Células y Tejidos , Neuroglía/trasplante , Neuronas/trasplante , Enfermedad de Parkinson/terapia , Sistema Nervioso Central/patología , Humanos , Degeneración Nerviosa/patología , Degeneración Nerviosa/terapia , Neuronas/patología , Enfermedad de Parkinson/patología
11.
Int J Mol Sci ; 22(21)2021 Oct 26.
Artículo en Inglés | MEDLINE | ID: mdl-34768962

RESUMEN

Parkinson's disease (PD) is a prevalent movement disorder characterized by the progressive loss of dopaminergic neurons in substantia nigra pars compacta (SNpc). The 6-hydroxydopamine (6-OHDA) lesion is still one of the most widely used techniques for modeling Parkinson's disease (PD) in rodents. Despite commonly used in rats, it can be challenging to reproduce a similar lesion in mice. Moreover, there is a lack of characterization of the extent of behavioral deficits and of the neuronal loss/neurotransmitter system in unilateral lesion mouse models. In this study, we present an extensive behavioral and histological characterization of a unilateral intrastriatal 6-OHDA mouse model. Our results indicate significant alterations in balance and fine motor coordination, voluntary locomotion, and in the asymmetry's degree of forelimb use in 6-OHDA lesioned animals, accompanied by a decrease in self-care and motivational behavior, common features of depressive-like symptomatology. These results were accompanied by a decrease in tyrosine hydroxylase (TH)-labelling and dopamine levels within the nigrostriatal pathway. Additionally, we also identify a marked astrocytic reaction, as well as proliferative and reactive microglia in lesioned areas. These results confirm the use of unilateral intrastriatal 6-OHDA mice for the generation of a mild model of nigrostriatal degeneration and further evidences the recapitulation of key aspects of PD, thereby being suitable for future studies beholding new therapeutical interventions for this disease.


Asunto(s)
Cuerpo Estriado/efectos de los fármacos , Cuerpo Estriado/fisiopatología , Oxidopamina/toxicidad , Trastornos Parkinsonianos/inducido químicamente , Trastornos Parkinsonianos/fisiopatología , Animales , Ansiedad/inducido químicamente , Conducta Animal/efectos de los fármacos , Conducta Animal/fisiología , Cuerpo Estriado/patología , Trastorno Depresivo/inducido químicamente , Modelos Animales de Enfermedad , Femenino , Masculino , Ratones , Ratones Endogámicos C57BL , Destreza Motora/efectos de los fármacos , Destreza Motora/fisiología , Degeneración Nerviosa/inducido químicamente , Degeneración Nerviosa/patología , Degeneración Nerviosa/fisiopatología , Neuroglía/efectos de los fármacos , Neuroglía/patología , Neuroglía/fisiología , Trastornos Parkinsonianos/patología , Fenotipo , Especificidad de la Especie , Sustancia Negra/efectos de los fármacos , Sustancia Negra/patología , Sustancia Negra/fisiopatología , Factores de Tiempo
12.
Eur J Neurosci ; 52(4): 3242-3255, 2020 08.
Artículo en Inglés | MEDLINE | ID: mdl-31958881

RESUMEN

Animal models of human diseases are crucial experimental tools to investigate the mechanisms involved in disease pathogenesis and to develop new therapies. In spite of the numerous animal models currently available that reproduce several neuropathological features of Parkinson disease (PD), it is challenging to have one that consistently recapitulates human PD conditions in both motor behaviors and biochemical pathological outcomes. Given that, we have implemented a new paradigm to expose rats to a chronic low dose of paraquat (PQ), using osmotic minipumps and characterized the developed pathologic features over time. The PQ exposure paradigm used lead to a rodent model of PD depicting progressive nigrostriatal dopaminergic neurodegeneration, characterized by a 41% significant loss of dopaminergic neuron in the substantia nigra pars compacta (SNpc), a significant decrease of 18% and 40% of dopamine levels in striatum at week 5 and 8, respectively, and a significant 1.5-fold decrease in motor performance. We observed a significant increase of microglia activation state, sustained levels of α-synucleinopathy and increased oxidative stress markers in the SNpc. In summary, this is an explorative study that allowed to characterize an improved PQ-based rat model that recapitulates cardinal features of PD and may represent an attractive tool to investigate several mechanisms underlying the various aspects of PD pathogenesis as well as for the validation of the efficacy of new therapeutic approaches that targets different mechanisms involved in PD neurodegeneration.


Asunto(s)
Paraquat , Enfermedad de Parkinson , Animales , Cuerpo Estriado , Modelos Animales de Enfermedad , Neuronas Dopaminérgicas , Paraquat/toxicidad , Porción Compacta de la Sustancia Negra , Ratas , Sustancia Negra
13.
Environ Microbiol ; 22(8): 3096-3111, 2020 08.
Artículo en Inglés | MEDLINE | ID: mdl-32337764

RESUMEN

Trebouxia sp. TR9 and Coccomyxa simplex are desiccation-tolerant microalgae with flexible cell walls, which undergo species-specific remodelling during dehydration-rehydration (D/R) due to their distinct ultrastructure and biochemical composition. Here, we tested the hypothesis that extracellular polysaccharides excreted by each microalga could be quantitatively and/or qualitatively modified by D/R. Extracellular polysaccharides were analysed by size exclusion and anion exchange chromatography, specific stains after gel electrophoresis and gas chromatography/mass spectrometry of trimethylsilyl derivatives (to determine their monosaccharide composition). The structure of a TR9-sulfated polymer was deduced from nuclear magnetic resonance (NMR) analyses. In addition, sugar-sulfotransferase encoding genes were identified in both microalgae, and their expression was measured by RT-qPCR. D/R did not alter the polydispersed profile of extracellular polysaccharides in either microalga but did induce quantitative changes in several peaks. Furthermore, medium-low-sized uronic acid-containing polysaccharides were almost completely substituted by higher molecular mass carbohydrates after D/R. Sulfated polysaccharide(s) were detected, for the first time, in the extracellular polymeric substances of both microalgae, but only increased significantly in TR9 after cyclic D/R, which induced a sugar-sulfotransferase gene and accumulated sulfated ß-D-galactofuranan(s). Biochemical remodelling of extracellular polysaccharides in aeroterrestrial desiccation-tolerant microalgae is species-specific and seems to play a role in the response to changes in environmental water availability.


Asunto(s)
Chlorophyta/fisiología , Desecación , Microalgas/fisiología , Polisacáridos/metabolismo , Estrés Fisiológico/fisiología , Pared Celular/fisiología , Chlorophyta/genética , Deshidratación , Líquenes , Sulfatos/química , Sulfotransferasas/genética
14.
J Neuroinflammation ; 17(1): 282, 2020 Sep 23.
Artículo en Inglés | MEDLINE | ID: mdl-32967684

RESUMEN

BACKGROUND: Alterations in the immune system are a complication of spinal cord injury (SCI) and have been linked to an excessive sympathetic outflow to lymphoid organs. Still unknown is whether these peripheral immune changes also contribute for the deleterious inflammatory response mounted at the injured spinal cord. METHODS: We analyzed different molecular outputs of the splenic sympathetic signaling for the first 24 h after a thoracic compression SCI. We also analyzed the effect of ablating the splenic sympathetic signaling to the innate immune and inflammatory response at the spleen and spinal cord 24 h after injury. RESULTS: We found that norepinephrine (NE) levels were already raised at this time-point. Low doses of NE stimulation of splenocytes in vitro mainly affected the neutrophils' population promoting an increase in both frequency and numbers. Interestingly, the interruption of the sympathetic communication to the spleen, by ablating the splenic nerve, resulted in reduced frequencies and numbers of neutrophils both at the spleen and spinal cord 1 day post-injury. CONCLUSION: Collectively, our data demonstrates that the splenic sympathetic signaling is involved in the infiltration of neutrophils after spinal cord injury. Our findings give new mechanistic insights into the dysfunctional regulation of the inflammatory response mounted at the injured spinal cord.


Asunto(s)
Fibras Adrenérgicas/fisiología , Infiltración Neutrófila/fisiología , Transducción de Señal/fisiología , Traumatismos de la Médula Espinal/fisiopatología , Bazo/inervación , Bazo/fisiología , Fibras Adrenérgicas/química , Animales , Femenino , Ratones , Ratones Endogámicos C57BL , Traumatismos de la Médula Espinal/inmunología , Vértebras Torácicas
15.
Electrophoresis ; 41(12): 1023-1030, 2020 06.
Artículo en Inglés | MEDLINE | ID: mdl-32147828

RESUMEN

The major goal of this study was to determine the affinity pattern of the terbutaline (TB) enantiomers toward α-, ß-, γ-, and heptakis(2,3-di-O-acetyl)-ß-cyclodextrins and using NMR spectroscopy for the understanding of the fine mechanisms of interaction between the cyclodextrins (CD) and TB enantiomers. It was shown once again that CE in combination with NMR spectroscopy represents a sensitive tool to study the affinity patterns and structure of CD complexes with chiral guests. Opposite affinity patterns of TB enantiomers toward native α- and ß-CDs were associated with significant differences between the structure of the related complexes in solution. In particular, the complex between TB enantiomers and α-CD was of the external type, whereas an inclusion complex was formed between TB enantiomers and ß-CD. One of the possible structures of the complex between TB and heptakis(2,3-di-O-acetyl)-ß-CD (HDA-ß-CD) was quite similar to that of TB and ß-CD, although the chiral recognition pattern and enantioselectivity of TB complexation with these two CDs were very different.


Asunto(s)
Terbutalina/química , Terbutalina/aislamiento & purificación , beta-Ciclodextrinas/química , Electroforesis Capilar/métodos , Espectroscopía de Resonancia Magnética/métodos , Estereoisomerismo
16.
Int J Mol Sci ; 21(14)2020 Jul 17.
Artículo en Inglés | MEDLINE | ID: mdl-32709070

RESUMEN

Citalopram is a selective serotonin reuptake inhibitor, and although widely used as an antidepressant, this drug has also demonstrated interesting repairing properties leading to motor recovery and pathology amelioration in animal models of stroke and degeneration. Here, we tested the efficacy of both 7-day and 8-week citalopram treatment in a contusive spinal cord injury (SCI) rat model. A combination of behavioral tests, histological and serum cytokine analysis was used to assess overall recovery. Despite promoting a mild reduction of inflammatory cells as well as an early, but transient increase of specific serum cytokines, citalopram administration showed no overall beneficial effects on motor performance or lesion extension. Our results do not support citalopram treatment as a therapeutic strategy for SCI.


Asunto(s)
Citalopram/uso terapéutico , Inhibidores Selectivos de la Recaptación de Serotonina/uso terapéutico , Traumatismos de la Médula Espinal/tratamiento farmacológico , Animales , Citalopram/administración & dosificación , Modelos Animales de Enfermedad , Femenino , Ratas , Ratas Wistar , Recuperación de la Función/efectos de los fármacos , Inhibidores Selectivos de la Recaptación de Serotonina/administración & dosificación , Médula Espinal/efectos de los fármacos , Médula Espinal/patología , Médula Espinal/fisiopatología , Traumatismos de la Médula Espinal/patología , Traumatismos de la Médula Espinal/fisiopatología , Resultado del Tratamiento
17.
Int J Mol Sci ; 21(10)2020 May 14.
Artículo en Inglés | MEDLINE | ID: mdl-32422916

RESUMEN

Parkinson's disease (PD) is the second most common age-related neurodegenerative disorder. The neurodegeneration leading to incapacitating motor abnormalities mainly occurs in the nigrostriatal pathway due to the loss of dopaminergic neurons in the substantia nigra pars compacta (SNpc). Several animal models have been developed not only to better understand the mechanisms underlying neurodegeneration but also to test the potential of emerging disease-modifying therapies. However, despite aging being the main risk factor for developing idiopathic PD, most of the studies do not use aged animals. Therefore, this study aimed at assessing the effect of aging in the unilateral 6-hydroxydopamine (6-OHDA)-induced animal model of PD. For this, female young adult and aged rats received a unilateral injection of 6-OHDA into the medial forebrain bundle. Subsequently, the impact of aging on 6-OHDA-induced effects on animal welfare, motor performance, and nigrostriatal integrity were assessed. The results showed that aging had a negative impact on animal welfare after surgery. Furthermore, 6-OHDA-induced impairments on skilled motor function were significantly higher in aged rats when compared with their younger counterparts. Nigrostriatal histological analysis further revealed an increased 6-OHDA-induced dopaminergic cell loss in the SNpc of aged animals when compared to young animals. Overall, our results demonstrate a higher susceptibility of aged animals to 6-OHDA toxic insult.


Asunto(s)
Dopamina/metabolismo , Neuronas Dopaminérgicas/metabolismo , Enfermedad de Parkinson Secundaria/fisiopatología , Enfermedad de Parkinson/metabolismo , Envejecimiento/metabolismo , Envejecimiento/patología , Animales , Cuerpo Estriado/efectos de los fármacos , Cuerpo Estriado/metabolismo , Cuerpo Estriado/patología , Modelos Animales de Enfermedad , Neuronas Dopaminérgicas/efectos de los fármacos , Neuronas Dopaminérgicas/patología , Femenino , Humanos , Masculino , Trastornos Motores/inducido químicamente , Trastornos Motores/metabolismo , Trastornos Motores/patología , Oxidopamina/toxicidad , Enfermedad de Parkinson/fisiopatología , Enfermedad de Parkinson Secundaria/inducido químicamente , Enfermedad de Parkinson Secundaria/metabolismo , Ratas , Sustancia Negra/efectos de los fármacos , Sustancia Negra/metabolismo , Sustancia Negra/patología
18.
Electrophoresis ; 40(15): 1913-1920, 2019 08.
Artículo en Inglés | MEDLINE | ID: mdl-30892703

RESUMEN

The enantiomeric separation of 9-fluorenylmethoxycarbonyl chloride (FMOC)-homocysteine (Hcy) by CE was investigated using γ-CD and the chiral ionic liquid (R)-(1-hydroxybutan-2-yl)(trimethyl)azanium-bis(trifluoromethanesulfon)imidate (also called (R)-N,N,N-trimethyl-2-aminobutanol-bis(trifluoromethane-sulfon)imidate) (EtCholNTf2 ) as chiral selectors. Using 2 mM γ-CD and 5 mM EtCholNTf2 in 50 mM borate buffer (pH 9), FMOC-Hcy enantiomers were separated with a resolution value of 3.8. A reversal in the enantiomer migration order in comparison with the single use of γ-CD in the separation buffer was obtained. Then, NMR experiments were carried out to elucidate the interactions taking place in the enantiomeric separation of FMOC-Hcy. NMR analyses highlighted the formation of an inclusion complex since the hydrophobic group of FMOC-Hcy was inserted into the γ-CD cavity. Moreover, interactions between EtCholNTf2 and γ-CD were also observed, suggesting that the chiral ionic liquid would also enter the cavity of the γ-CD.


Asunto(s)
Electroforesis Capilar/métodos , Homocisteína/aislamiento & purificación , Líquidos Iónicos/química , Espectroscopía de Resonancia Magnética/métodos , gamma-Ciclodextrinas/química , Homocisteína/análisis , Homocisteína/química , Imidazoles/química , Estereoisomerismo
19.
Electrophoresis ; 40(15): 1904-1912, 2019 08.
Artículo en Inglés | MEDLINE | ID: mdl-30900263

RESUMEN

The major goal of this study was to determine the affinity pattern of brombuterol (BB) enantiomers toward various cyclodextrins (CD) and to evaluate the potential of NMR spectroscopy for understanding fine mechanisms of interactions between CDs and BB enantiomers. Separation of BB enantiomers was performed in a fused-silica capillary using a phosphate buffer, pH 2.5, at the room temperature in the normal polarity mode. It was shown once again that CE in combination with NMR spectroscopy represents a very sensitive tool for studies of affinity patterns and structure of CD complexes with chiral guests. Although opposite affinity patterns of BB enantiomers were observed toward native ß- and γ-CDs, no significant differences between the structures of the complexes of these two CDs with BB were detected by NMR spectroscopy. In contrary to this, the opposite affinity pattern of BB enantiomers toward ß-CD and its two sulfated derivatives, heptakis (2,3-O-diacetyl-6-sulfo)-ß-CD (HDAS-ß-CD) and heptakis (2-O-methyl-3,6-di-O-sulfo)-ß-CD (HMDS-ß-CD) was associated with major differences in the structure of the complexes. In addition, it was shown again that HMDS-ß-CD provides separation of enantiomers without formation of inclusion-type complex with the chiral analyte.


Asunto(s)
Compuestos de Anilina/química , Compuestos de Anilina/aislamiento & purificación , Ciclodextrinas/química , Electroforesis Capilar/métodos , Etanolaminas/química , Etanolaminas/aislamiento & purificación , Espectroscopía de Resonancia Magnética/métodos , Compuestos de Anilina/análisis , Etanolaminas/análisis , Concentración de Iones de Hidrógeno , Estereoisomerismo
20.
Stem Cells ; 36(5): 696-708, 2018 05.
Artículo en Inglés | MEDLINE | ID: mdl-29352743

RESUMEN

Patients suffering from spinal cord injury (SCI) still have a dismal prognosis. Despite all the efforts developed in this area, currently there are no effective treatments. Therefore, cell therapies have been proposed as a viable alternative to the current treatments used. Adipose tissue-derived stromal cells (ASCs) and olfactory ensheathing cells (OECs) have been used with promising results in different models of SCI, namely due to the regenerative properties of the secretome of the first, and the guidance capability of the second. Using an in vitro model of axonal growth, the dorsal root ganglia explants, we demonstrated that OECs induce neurite outgrowth mainly through cell-cell interactions, while ASCs' effects are strongly mediated by the release of paracrine factors. A proteomic analysis of ASCs' secretome revealed the presence of proteins involved in VEGF, PI3K, and Cadherin signaling pathways, which may be responsible for the effects observed. Then, the cotransplantation of ASCs and OECs showed to improve motor deficits of SCI-rats. Particular parameters of movement such as stepping, coordination, and toe clearance were improved in rats that received the transplant of cells, in comparison to nontreated rats. A histological analysis of the spinal cord tissues revealed that transplantation of ASCs and OECs had a major effect on the reduction of inflammatory cells close the lesion site. A slight reduction of astrogliosis was also evident. Overall, the results obtained with the present work indicate that the cotransplantation of ASCs and OECs brings important functional benefits to the injured spinal cord. Stem Cells 2018;36:696-708.


Asunto(s)
Tejido Adiposo/citología , Bulbo Olfatorio/citología , Traumatismos de la Médula Espinal/terapia , Células del Estroma/citología , Animales , Células Cultivadas , Femenino , Humanos , Regeneración Nerviosa/fisiología , Ratas Wistar , Trasplante de Células Madre/métodos , Células Madre/citología , Células del Estroma/fisiología
SELECCIÓN DE REFERENCIAS
DETALLE DE LA BÚSQUEDA