Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 20 de 37
Filtrar
1.
Proc Natl Acad Sci U S A ; 117(20): 10989-10999, 2020 05 19.
Artículo en Inglés | MEDLINE | ID: mdl-32354997

RESUMEN

Staphylococcus aureus infections can lead to diseases that range from localized skin abscess to life-threatening toxic shock syndrome. The SrrAB two-component system (TCS) is a global regulator of S. aureus virulence and critical for survival under environmental conditions such as hypoxic, oxidative, and nitrosative stress found at sites of infection. Despite the critical role of SrrAB in S. aureus pathogenicity, the mechanism by which the SrrAB TCS senses and responds to these environmental signals remains unknown. Bioinformatics analysis showed that the SrrB histidine kinase contains several domains, including an extracellular Cache domain and a cytoplasmic HAMP-PAS-DHp-CA region. Here, we show that the PAS domain regulates both kinase and phosphatase enzyme activity of SrrB and present the structure of the DHp-CA catalytic core. Importantly, this structure shows a unique intramolecular cysteine disulfide bond in the ATP-binding domain that significantly affects autophosphorylation kinetics. In vitro data show that the redox state of the disulfide bond affects S. aureus biofilm formation and toxic shock syndrome toxin-1 production. Moreover, with the use of the rabbit infective endocarditis model, we demonstrate that the disulfide bond is a critical regulatory element of SrrB function during S. aureus infection. Our data support a model whereby the disulfide bond and PAS domain of SrrB sense and respond to the cellular redox environment to regulate S. aureus survival and pathogenesis.


Asunto(s)
Proteínas Bacterianas/metabolismo , Cisteína/metabolismo , Proteínas Represoras/metabolismo , Staphylococcus aureus/metabolismo , Animales , Proteínas Bacterianas/química , Proteínas Bacterianas/genética , Toxinas Bacterianas , Secuencia de Bases , Biopelículas , Dominio Catalítico , Modelos Animales de Enfermedad , Endocarditis , Enterotoxinas , Femenino , Regulación Bacteriana de la Expresión Génica , Histidina Quinasa/metabolismo , Masculino , Modelos Moleculares , Mutación , Oxidación-Reducción , Dominios Proteicos , Conejos , Proteínas Represoras/química , Proteínas Represoras/genética , Sepsis , Infecciones Estafilocócicas/metabolismo , Staphylococcus aureus/genética , Staphylococcus aureus/patogenicidad , Superantígenos , Thermotoga maritima , Virulencia/genética , Virulencia/fisiología
2.
J Bacteriol ; 201(14)2019 07 15.
Artículo en Inglés | MEDLINE | ID: mdl-30962356

RESUMEN

Phage regulatory switches (phage-RSs) are a newly described form of active lysogeny where prophages function as regulatory mechanisms for expression of chromosomal bacterial genes. In Staphylococcus aureus, ϕSa3int is a widely distributed family of prophages that integrate into the ß-toxin structural gene hlb, effectively inactivating it. However, ß-toxin-producing strains often arise during infections and are more virulent in experimental infective endocarditis and pneumonia infections. We present evidence that in S. aureus MW2, ϕSa3mw excision is temporally and differentially responsive to growth conditions relevant to S. aureus pathogenesis. PCR analyses of ϕSa3mw (integrated and excised) and of intact hlb showed that ϕSa3mw preferentially excises in response to hydrogen peroxide-induced oxidative stress and during biofilm growth. ϕSa3mw remains as a prophage when in contact with human aortic endothelial cells in culture. A criterion for a prophage to be considered a phage-RS is the inability to lyse host cells. MW2 grown under phage-inducing conditions did not release infectious phage particles by plaque assay or transmission electron microscopy, indicating that ϕSa3mw does not carry out a productive lytic cycle. These studies highlight a dynamic, and perhaps more sophisticated, S. aureus-prophage interaction where ϕSa3int prophages provide a novel regulatory mechanism for the conditional expression of virulence factors.IMPORTANCE ß-Toxin is a sphingomyelinase hemolysin that significantly contributes to Staphylococcus aureus pathogenesis. In most S. aureus isolates the prophage ϕSa3int inserts into the ß-toxin gene hlb, inactivating it, but human and experimental infections give rise to ß-toxin-producing variants. However, it remained to be established whether ϕSa3mw excises in response to specific environmental cues, restoring the ß-toxin gene sequence. This is not only of fundamental interest but also critical when designing intervention strategies and therapeutics. We provide evidence that ϕSa3mw actively excises, allowing the conditional expression of ß-toxin. ϕSa3int prophages may play a novel and largely uncharacterized role in S. aureus pathogenesis as molecular regulatory switches that promote bacterial fitness and adaptation to the challenges presented by the mammalian host.


Asunto(s)
Toxinas Bacterianas/biosíntesis , Regulación Bacteriana de la Expresión Génica , Profagos/genética , Staphylococcus aureus/genética , Biopelículas/crecimiento & desarrollo , Células Endoteliales/microbiología , Humanos , Estrés Oxidativo , Staphylococcus aureus/patogenicidad , Staphylococcus aureus/virología , Virulencia
3.
Infect Immun ; 86(3)2018 03.
Artículo en Inglés | MEDLINE | ID: mdl-29229737

RESUMEN

Staphylococcus aureus infective endocarditis (IE) is a fast-progressing and tissue-destructive infection of the cardiac endothelium. The superantigens (SAgs) toxic shock syndrome toxin 1 (TSST-1), staphylococcal enterotoxin C (SEC), and the toxins encoded by the enterotoxin gene cluster (egc) play a novel and essential role in the etiology of S. aureus IE. Recent studies indicate that SAgs act at the infection site to cause tissue pathology and promote vegetation growth. The underlying mechanism of SAg involvement has not been clearly defined. In SAg-mediated responses, immune cell priming is considered a primary triggering event leading to endothelial cell activation and altered function. Utilizing immortalized human aortic endothelial cells (iHAECs), we demonstrated that TSST-1 directly activates iHAECs, as documented by upregulation of vascular and intercellular adhesion molecules (VCAM-1 and ICAM-1). TSST-1-mediated activation results in increased monolayer permeability and defects in vascular reendothelialization. Yet stimulation of iHAECs with TSST-1 fails to induce interleukin-8 (IL-8) and IL-6 production. Furthermore, simultaneous stimulation of iHAECs with TSST-1 and lipopolysaccharide (LPS) inhibits LPS-mediated IL-8 and IL-6 secretion, even after pretreatment with either of the proinflammatory cytokines tumor necrosis factor alpha (TNF-α) and IL-1ß. IL-8 suppression is not mediated by TSST-1 binding to its canonical receptor major histocompatibility complex class II (MHC-II), supporting current evidence for a nonhematopoietic interacting site on SAgs. Together, the data suggest that TSST-1 differentially regulates cell-bound and secreted markers of endothelial cell activation that may result in dysregulated innate immune responses during S. aureus IE. Endothelial changes resulting from the action of SAgs can therefore directly contribute to the aggressive nature of S. aureus IE and development of life-threatening complications.


Asunto(s)
Aorta/citología , Toxinas Bacterianas/toxicidad , Células Endoteliales/efectos de los fármacos , Enterotoxinas/toxicidad , Superantígenos/toxicidad , Movimiento Celular/efectos de los fármacos , Proliferación Celular/efectos de los fármacos , Células Cultivadas , Regulación de la Expresión Génica/efectos de los fármacos , Humanos , Interleucina-6/genética , Interleucina-6/metabolismo , Interleucina-8/genética , Interleucina-8/metabolismo
4.
PLoS Pathog ; 12(5): e1005604, 2016 05.
Artículo en Inglés | MEDLINE | ID: mdl-27144398

RESUMEN

Staphylococcus aureus is a human commensal and opportunistic pathogen that causes devastating infections in a wide range of locations within the body. One of the defining characteristics of S. aureus is its ability to form clumps in the presence of soluble fibrinogen, which likely has a protective benefit and facilitates adhesion to host tissue. We have previously shown that the ArlRS two-component regulatory system controls clumping, in part by repressing production of the large surface protein Ebh. In this work we show that ArlRS does not directly regulate Ebh, but instead ArlRS activates expression of the global regulator MgrA. Strains lacking mgrA fail to clump in the presence of fibrinogen, and clumping can be restored to an arlRS mutant by overexpressing either arlRS or mgrA, indicating that ArlRS and MgrA constitute a regulatory pathway. We used RNA-seq to show that MgrA represses ebh, as well as seven cell wall-associated proteins (SraP, Spa, FnbB, SasG, SasC, FmtB, and SdrD). EMSA analysis showed that MgrA directly represses expression of ebh and sraP. Clumping can be restored to an mgrA mutant by deleting the genes for Ebh, SraP and SasG, suggesting that increased expression of these proteins blocks clumping by steric hindrance. We show that mgrA mutants are less virulent in a rabbit model of endocarditis, and virulence can be partially restored by deleting the genes for the surface proteins ebh, sraP, and sasG. While mgrA mutants are unable to clump, they are known to have enhanced biofilm capacity. We demonstrate that this increase in biofilm formation is partially due to up-regulation of SasG, a surface protein known to promote intercellular interactions. These results confirm that ArlRS and MgrA constitute a regulatory cascade, and that they control expression of a number of genes important for virulence, including those for eight large surface proteins.


Asunto(s)
Proteínas Bacterianas/metabolismo , Regulación Bacteriana de la Expresión Génica/fisiología , Proteínas Quinasas/metabolismo , Infecciones Estafilocócicas/metabolismo , Staphylococcus aureus/patogenicidad , Factores de Virulencia/metabolismo , Virulencia/fisiología , Animales , Western Blotting , Modelos Animales de Enfermedad , Ensayo de Cambio de Movilidad Electroforética , Técnicas de Silenciamiento del Gen , Proteínas de la Membrana/biosíntesis , Microscopía Electrónica de Rastreo , Microscopía Fluorescente , Reacción en Cadena de la Polimerasa , Conejos
5.
Biochemistry ; 55(17): 2510-7, 2016 05 03.
Artículo en Inglés | MEDLINE | ID: mdl-27015018

RESUMEN

ß-Toxin is an important virulence factor of Staphylococcus aureus, contributing to colonization and development of disease [Salgado-Pabon, W., et al. (2014) J. Infect. Dis. 210, 784-792; Huseby, M. J., et al. (2010) Proc. Natl. Acad. Sci. U.S.A. 107, 14407-14412; Katayama, Y., et al. (2013) J. Bacteriol. 195, 1194-1203]. This cytotoxin has two distinct mechanisms of action: sphingomyelinase activity and DNA biofilm ligase activity. However, the distinct mechanism that is most important for its role in infective endocarditis is unknown. We characterized the active site of ß-toxin DNA biofilm ligase activity by examining deficiencies in site-directed mutants through in vitro DNA precipitation and biofilm formation assays. Possible conformational changes in mutant structure compared to that of wild-type toxin were assessed preliminarily by trypsin digestion analysis, retention of sphingomyelinase activity, and predicted structures based on the native toxin structure. We addressed the contribution of each mechanism of action to producing infective endocarditis and sepsis in vivo in a rabbit model. The H289N ß-toxin mutant, lacking sphingomyelinase activity, exhibited lower sepsis lethality and infective endocarditis vegetation formation compared to those of the wild-type toxin. ß-Toxin mutants with disrupted biofilm ligase activity did not exhibit decreased sepsis lethality but were deficient in infective endocarditis vegetation formation compared to the wild-type protein. Our study begins to characterize the DNA biofilm ligase active site of ß-toxin and suggests ß-toxin functions importantly in infective endocarditis through both of its mechanisms of action.


Asunto(s)
Toxinas Bacterianas/efectos adversos , Biopelículas/efectos de los fármacos , Endocarditis/etiología , Proteínas Hemolisinas/efectos adversos , Ligasas/deficiencia , Sepsis/etiología , Esfingomielina Fosfodiesterasa/deficiencia , Staphylococcus aureus/enzimología , Secuencia de Aminoácidos , Animales , Toxinas Bacterianas/química , Toxinas Bacterianas/genética , Toxinas Bacterianas/metabolismo , Biopelículas/crecimiento & desarrollo , Endocarditis/enzimología , Endocarditis/patología , Femenino , Proteínas Hemolisinas/química , Proteínas Hemolisinas/genética , Proteínas Hemolisinas/metabolismo , Masculino , Conformación Proteica , Conejos , Sepsis/enzimología , Sepsis/patología , Esfingomielina Fosfodiesterasa/efectos adversos , Esfingomielina Fosfodiesterasa/química , Esfingomielina Fosfodiesterasa/genética , Esfingomielina Fosfodiesterasa/metabolismo , Infecciones Estafilocócicas/complicaciones , Infecciones Estafilocócicas/microbiología , Staphylococcus aureus/genética
6.
Proc Natl Acad Sci U S A ; 110(12): 4458-63, 2013 Mar 19.
Artículo en Inglés | MEDLINE | ID: mdl-23417297

RESUMEN

The Gram-negative enteroinvasive bacterium Shigella flexneri is responsible for the endemic form of bacillary dysentery, an acute rectocolitis in humans. S. flexneri uses a type III secretion system to inject effector proteins into host cells, thus diverting cellular functions to its own benefit. Protective immunity to reinfection requires several rounds of infection to be elicited and is short-lasting, suggesting that S. flexneri interferes with the priming of specific immunity. Considering the key role played by T-lymphocyte trafficking in priming of adaptive immunity, we investigated the impact of S. flexneri on T-cell dynamics in vivo. By using two-photon microscopy to visualize bacterium-T-cell cross-talks in the lymph nodes, where the adaptive immunity is initiated, we provide evidence that S. flexneri, via its type III secretion system, impairs the migration pattern of CD4(+) T cells independently of cognate recognition of bacterial antigens. We show that bacterial invasion of CD4(+) T lymphocytes occurs in vivo, and results in cell migration arrest. In the absence of invasion, CD4(+) T-cell migration parameters are also dramatically altered. Signals resulting from S. flexneri interactions with subcapsular sinus macrophages and dendritic cells, and recruitment of polymorphonuclear cells are likely to contribute to this phenomenon. These findings indicate that S. flexneri targets T lymphocytes in vivo and highlight the role of type III effector secretion in modulating host adaptive immune responses.


Asunto(s)
Inmunidad Adaptativa , Antígenos Bacterianos/inmunología , Linfocitos T CD4-Positivos/inmunología , Movimiento Celular/inmunología , Disentería Bacilar/inmunología , Interacciones Huésped-Patógeno/inmunología , Shigella flexneri/fisiología , Animales , Disentería Bacilar/genética , Femenino , Ratones , Ratones Noqueados , Transducción de Señal/inmunología
7.
PLoS Pathog ; 9(12): e1003819, 2013.
Artículo en Inglés | MEDLINE | ID: mdl-24367264

RESUMEN

Staphylococcus aureus is a prominent bacterial pathogen that is known to agglutinate in the presence of human plasma to form stable clumps. There is increasing evidence that agglutination aids S. aureus pathogenesis, but the mechanisms of this process remain to be fully elucidated. To better define this process, we developed both tube based and flow cytometry methods to monitor clumping in the presence of extracellular matrix proteins. We discovered that the ArlRS two-component system regulates the agglutination mechanism during exposure to human plasma or fibrinogen. Using divergent S. aureus strains, we demonstrated that arlRS mutants are unable to agglutinate, and this phenotype can be complemented. We found that the ebh gene, encoding the Giant Staphylococcal Surface Protein (GSSP), was up-regulated in an arlRS mutant. By introducing an ebh complete deletion into an arlRS mutant, agglutination was restored. To assess whether GSSP is the primary effector, a constitutive promoter was inserted upstream of the ebh gene on the chromosome in a wildtype strain, which prevented clump formation and demonstrated that GSSP has a negative impact on the agglutination mechanism. Due to the parallels of agglutination with infective endocarditis development, we assessed the phenotype of an arlRS mutant in a rabbit combined model of sepsis and endocarditis. In this model the arlRS mutant displayed a large defect in vegetation formation and pathogenesis, and this phenotype was partially restored by removing GSSP. Altogether, we have discovered that the ArlRS system controls a novel mechanism through which S. aureus regulates agglutination and pathogenesis.


Asunto(s)
Proteínas Bacterianas/fisiología , Staphylococcus aureus/fisiología , Staphylococcus aureus/patogenicidad , Aglutinación/genética , Animales , Proteínas Bacterianas/genética , Proteínas Portadoras/genética , Endocarditis Bacteriana/genética , Endocarditis Bacteriana/microbiología , Femenino , Fibrinógeno/fisiología , Regulación Bacteriana de la Expresión Génica , Humanos , Masculino , Organismos Modificados Genéticamente , Conejos , Infecciones Estafilocócicas/genética , Infecciones Estafilocócicas/microbiología , Staphylococcus aureus/genética
8.
Clin Microbiol Rev ; 26(3): 422-47, 2013 Jul.
Artículo en Inglés | MEDLINE | ID: mdl-23824366

RESUMEN

SUMMARY This review begins with a discussion of the large family of Staphylococcus aureus and beta-hemolytic streptococcal pyrogenic toxin T lymphocyte superantigens from structural and immunobiological perspectives. With this as background, the review then discusses the major known and possible human disease associations with superantigens, including associations with toxic shock syndromes, atopic dermatitis, pneumonia, infective endocarditis, and autoimmune sequelae to streptococcal illnesses. Finally, the review addresses current and possible novel strategies to prevent superantigen production and passive and active immunization strategies.


Asunto(s)
Exotoxinas/inmunología , Staphylococcus aureus/inmunología , Streptococcus pyogenes/inmunología , Superantígenos/inmunología , Animales , Exotoxinas/química , Humanos , Modelos Moleculares , Infecciones Estafilocócicas/microbiología , Infecciones Estreptocócicas/microbiología , Superantígenos/química
9.
J Infect Dis ; 210(12): 1920-7, 2014 Dec 15.
Artículo en Inglés | MEDLINE | ID: mdl-24951827

RESUMEN

BACKGROUND: Diabetic foot ulcer (DFU) infections are challenging. Staphylococcus aureus is the most commonly isolated pathogen in DFUs. Superantigens (SAgs) are causative in many S. aureus infections. We hypothesized both that DFU S. aureus will produce large SAg numbers, consistent with skin infections, and that certain SAgs will be overrepresented. We assessed the SAg and α-toxin profile of isolates from patients with DFU, compared with profiles of isolates from other sources. MATERIALS: Twenty-five S. aureus isolates from patients with DFU were characterized. Polymerase chain reaction was used to detect genes for methicillin-resistance and SAgs. Some SAgs and the α-toxin were quantified. We compared the SAg profile of DFU isolates with SAg profiles of S. aureus isolates from skin lesions of patients with atopic dermatitis and from vaginal mucosa of healthy individuals. RESULTS: Most DFU isolates were methicillin susceptible (64%), with USA100 the most common clonal group. The SAg gene profile of DFU isolates most closely resembled that of isolates from patients with atopic dermatitis, with the highest number of different SAg genes per isolate and a high prevalence of staphylococcal enterotoxin D and the enterotoxin gene cluster. DFU isolates also had a high prevalence of staphylococcal enterotoxin-like X. CONCLUSIONS: Comparison of the SAg profile of DFU isolates to SAg profiles of skin lesion isolates and vaginal mucosa isolates revealed that the SAg profile of DFU isolates was more similar to that of skin lesion isolates. SAgs offer selective advantages in facilitating DFU infections and suggest that therapies to neutralize or reduce SAg production by S. aureus may be beneficial in management of patients with DFU.


Asunto(s)
Pie Diabético/microbiología , Infecciones Estafilocócicas/microbiología , Staphylococcus aureus/genética , Superantígenos/genética , Toxinas Bacterianas/análisis , Toxinas Bacterianas/genética , Femenino , Proteínas Hemolisinas/análisis , Proteínas Hemolisinas/genética , Humanos , Masculino , Reacción en Cadena de la Polimerasa , Staphylococcus aureus/química , Staphylococcus aureus/aislamiento & purificación , Superantígenos/análisis , Úlcera/microbiología
10.
J Infect Dis ; 210(5): 784-92, 2014 Sep 01.
Artículo en Inglés | MEDLINE | ID: mdl-24620023

RESUMEN

BACKGROUND: Staphylococcus aureus causes life-threatening infections, including infective endocarditis, sepsis, and pneumonia. ß-toxin is a sphingomyelinase encoded for by virtually all S. aureus strains and exhibits human immune cell cytotoxicity. The toxin enhances S. aureus phenol-soluble modulin activity, and its activity is enhanced by superantigens. The bacteriophage φSa3 inserts into the ß-toxin gene in human strains, inactivating it in the majority of S. aureus clonal groups. Hence, most strains are reported not to secrete ß-toxin. METHODS: This dynamic was investigated by examining ß-toxin production by multiple clonal groups of S. aureus, both in vitro and in vivo during infections in rabbit models of infective endocarditis, sepsis, and pneumonia. RESULTS: ß-toxin phenotypic variants are common among strains containing φSa3. In vivo, φSa3 is differentially induced in heart vegetations, kidney abscesses, and ischemic liver compared to spleen and blood, and in vitro growth in liquid culture. Furthermore, in pneumonia, wild-type ß-toxin production leads to development of large caseous lesions, and in infective endocarditis, increases the size of pathognomonic vegetations. CONCLUSIONS: This study demonstrates the dynamic interaction between S. aureus and the infected host, where φSa3 serves as a regulator of virulence gene expression, and increased fitness and virulence in new environments.


Asunto(s)
Silenciador del Gen , Proteínas Hemolisinas/metabolismo , Profagos/genética , Esfingomielina Fosfodiesterasa/metabolismo , Fagos de Staphylococcus/genética , Staphylococcus aureus/metabolismo , Staphylococcus aureus/virología , Animales , Toxinas Bacterianas/genética , Modelos Animales de Enfermedad , Endocarditis Bacteriana/microbiología , Endocarditis Bacteriana/patología , Proteínas Hemolisinas/genética , Mutagénesis Insercional , Neumonía Estafilocócica/microbiología , Neumonía Estafilocócica/patología , Conejos , Recombinación Genética , Sepsis/microbiología , Sepsis/patología , Esfingomielina Fosfodiesterasa/genética , Staphylococcus aureus/genética
11.
J Infect Dis ; 209(12): 1955-62, 2014 Jun 15.
Artículo en Inglés | MEDLINE | ID: mdl-24357631

RESUMEN

BACKGROUND: Staphylococcus aureus causes serious infections in both hospital and community settings. Attempts have been made to prevent human infection through vaccination against bacterial cell-surface antigens; thus far all have failed. Here we show that superantigens and cytolysins, when used in vaccine cocktails, provide protection from S. aureus USA100-USA400 intrapulmonary challenge. METHODS: Rabbits were actively vaccinated (wild-type toxins or toxoids) or passively immunized (hyperimmune serum) against combinations of superantigens (toxic shock syndrome toxin 1, enterotoxins B and C, and enterotoxin-like X) and cytolysins (α-, ß-, and γ-toxins) and challenged intrapulmonarily with multiple strains of S. aureus, both methicillin-sensitive and methicillin-resistant. RESULTS: Active vaccination against a cocktail containing bacterial cell-surface antigens enhanced disease severity as tested by infective endocarditis. Active vaccination against secreted superantigens and cytolysins resulted in protection of 86 of 88 rabbits when challenged intrapulmonarily with 9 different S. aureus strains, compared to only 1 of 88 nonvaccinated animals. Passive immunization studies demonstrated that production of neutralizing antibodies was an important mechanism of protection. CONCLUSIONS: The data suggest that vaccination against bacterial cell-surface antigens increases disease severity, but vaccination against secreted virulence factors provides protection against S. aureus. These results advance our understanding of S. aureus pathogenesis and have important implications in disease prevention.


Asunto(s)
Inmunización Pasiva , Neumonía Estafilocócica/prevención & control , Vacunas Estafilocócicas/inmunología , Animales , Anticuerpos Antibacterianos/sangre , Anticuerpos Neutralizantes/sangre , Toxinas Bacterianas/inmunología , Citotoxinas/inmunología , Modelos Animales de Enfermedad , Endocarditis Bacteriana/inmunología , Endocarditis Bacteriana/prevención & control , Enterotoxinas/inmunología , Femenino , Masculino , Staphylococcus aureus Resistente a Meticilina/inmunología , Neumonía Estafilocócica/inmunología , Conejos , Superantígenos/inmunología , Factores de Virulencia/inmunología
12.
Nat Commun ; 15(1): 3756, 2024 May 04.
Artículo en Inglés | MEDLINE | ID: mdl-38704381

RESUMEN

The human pathogen Neisseria gonorrhoeae ascends into the upper female reproductive tract to cause damaging inflammation within the Fallopian tubes and pelvic inflammatory disease (PID), increasing the risk of infertility and ectopic pregnancy. The loss of ciliated cells from the epithelium is thought to be both a consequence of inflammation and a cause of adverse sequelae. However, the links between infection, inflammation, and ciliated cell extrusion remain unresolved. With the use of ex vivo cultures of human Fallopian tube paired with RNA sequencing we defined the tissue response to gonococcal challenge, identifying cytokine, chemokine, cell adhesion, and apoptosis related transcripts not previously recognized as potentiators of gonococcal PID. Unexpectedly, IL-17C was one of the most highly induced genes. Yet, this cytokine has no previous association with gonococcal infection nor pelvic inflammatory disease and thus it was selected for further characterization. We show that human Fallopian tubes express the IL-17C receptor on the epithelial surface and that treatment with purified IL-17C induces pro-inflammatory cytokine secretion in addition to sloughing of the epithelium and generalized tissue damage. These results demonstrate a previously unrecognized but critical role of IL-17C in the damaging inflammation induced by gonococci in a human explant model of PID.


Asunto(s)
Trompas Uterinas , Gonorrea , Inflamación , Interleucina-17 , Neisseria gonorrhoeae , Adulto , Femenino , Humanos , Citocinas/metabolismo , Epitelio/patología , Epitelio/microbiología , Trompas Uterinas/microbiología , Trompas Uterinas/patología , Trompas Uterinas/inmunología , Gonorrea/inmunología , Gonorrea/microbiología , Gonorrea/patología , Inflamación/patología , Inflamación/microbiología , Interleucina-17/metabolismo , Neisseria gonorrhoeae/inmunología , Neisseria gonorrhoeae/patogenicidad , Enfermedad Inflamatoria Pélvica/microbiología , Enfermedad Inflamatoria Pélvica/patología , Enfermedad Inflamatoria Pélvica/inmunología , Receptores de Interleucina-17/metabolismo , Receptores de Interleucina-17/genética
13.
Antimicrob Agents Chemother ; 57(11): 5432-7, 2013 Nov.
Artículo en Inglés | MEDLINE | ID: mdl-23959313

RESUMEN

Gram-positive bacteria cause serious human illnesses through combinations of cell surface and secreted virulence factors. We initiated studies with four of these organisms to develop novel topical antibacterial agents that interfere with growth and exotoxin production, focusing on menaquinone analogs. Menadione, 1,4-naphthoquinone, and coenzymes Q1 to Q3 but not menaquinone, phylloquinone, or coenzyme Q10 inhibited the growth and to a greater extent exotoxin production of Staphylococcus aureus, Bacillus anthracis, Streptococcus pyogenes, and Streptococcus agalactiae at concentrations of 10 to 200 µg/ml. Coenzyme Q1 reduced the ability of S. aureus to cause toxic shock syndrome in a rabbit model, inhibited the growth of four Gram-negative bacteria, and synergized with another antimicrobial agent, glycerol monolaurate, to inhibit S. aureus growth. The staphylococcal two-component system SrrA/B was shown to be an antibacterial target of coenzyme Q1. We hypothesize that menaquinone analogs both induce toxic reactive oxygen species and affect bacterial plasma membranes and biosynthetic machinery to interfere with two-component systems, respiration, and macromolecular synthesis. These compounds represent a novel class of potential topical therapeutic agents.


Asunto(s)
Antibacterianos/farmacología , Bacillus anthracis/efectos de los fármacos , Staphylococcus aureus/efectos de los fármacos , Streptococcus agalactiae/efectos de los fármacos , Streptococcus pyogenes/efectos de los fármacos , Vitamina K 2/farmacología , Administración Tópica , Animales , Bacillus anthracis/crecimiento & desarrollo , Proteínas Bacterianas/antagonistas & inhibidores , Proteínas Bacterianas/metabolismo , Membrana Celular/efectos de los fármacos , Sinergismo Farmacológico , Exotoxinas/antagonistas & inhibidores , Exotoxinas/metabolismo , Humanos , Lauratos/farmacología , Monoglicéridos/farmacología , Conejos , Especies Reactivas de Oxígeno/metabolismo , Proteínas Represoras/antagonistas & inhibidores , Proteínas Represoras/metabolismo , Choque Séptico/tratamiento farmacológico , Choque Séptico/microbiología , Infecciones Estafilocócicas/tratamiento farmacológico , Infecciones Estafilocócicas/microbiología , Staphylococcus aureus/crecimiento & desarrollo , Staphylococcus aureus/metabolismo , Streptococcus agalactiae/crecimiento & desarrollo , Streptococcus pyogenes/crecimiento & desarrollo
14.
J Infect ; 86(2): 123-133, 2023 02.
Artículo en Inglés | MEDLINE | ID: mdl-36603774

RESUMEN

OBJECTIVES: We aimed at determining whether specific S. aureus strains cause infective endocarditis (IE) in the course of Staphylococcus aureus bacteraemia (SAB). METHODS: A genome-wide association study (GWAS) including 924 S. aureus genomes from IE (274) and non-IE (650) SAB patients from international cohorts was conducted, and a subset of strains was tested with two experimental animal models of IE, one investigating the early step of bacterial adhesion to inflamed mice valves, the second evaluating the local and systemic developmental process of IE on mechanically-damaged rabbit valves. RESULTS: The genetic profile of S. aureus IE and non-IE SAB strains did not differ when considering single nucleotide polymorphisms, coding sequences, and k-mers analysed in GWAS. In the murine inflammation-induced IE model, no difference was observed between IE and non-IE SAB strains both in terms of adhesion to the cardiac valves and in the propensity to cause IE; in the mechanical IE-induced rabbit model, there was no difference between IE and non-IE SAB strains regarding the vegetation size and CFU. CONCLUSION: All strains of S. aureus isolated from SAB patients must be considered as capable of causing this common and lethal infection once they have accessed the bloodstream.


Asunto(s)
Bacteriemia , Endocarditis Bacteriana , Endocarditis , Infecciones Estafilocócicas , Animales , Conejos , Ratones , Estudio de Asociación del Genoma Completo , Bacteriemia/microbiología , Infecciones Estafilocócicas/microbiología , Staphylococcus aureus/genética , Endocarditis Bacteriana/microbiología , Endocarditis/microbiología
15.
J Immunol ; 184(4): 2076-85, 2010 Feb 15.
Artículo en Inglés | MEDLINE | ID: mdl-20089698

RESUMEN

The T cell response to Shigella, the causative agent of bacillary dysentery, remains poorly understood. Using a murine model of infection, we report that Shigella flexneri primes predominately IL-17A- and IL-22-producing Th17 cells. Shigella-specific Th1 cells are only significantly induced on secondary infection, whereas specific Th2 and CD8(+) T cells are undetectable. Apart from Th17 cells that are primed in a MHC class II- and IL-6-dependent, but IL12/23p40-independent manner, we identified gammadelta T cells as an additional but minor source of IL-17A. Priming of IL-17A(+) gammadelta T cells is dependent on IL12/23p40, but independent of MHC-class II and IL-6. Th17 cells have emerged as important players in inflammatory, autoimmune, and infectious diseases. Among the yet unresolved questions is their role in long-term immunity to pathogens. In this study, we show that the elicited S. flexneri-specific Th17 pool gives rise to an enhanced recall response up to 12 mo after priming, suggesting the presence of a long-term memory state. The clearance of primary infection is impaired in the absence of T cells, but independently of IL-17A. However, after reinfection, IL-17A produced by S. flexneri-specific Th17 cells becomes important to ultimately restrict bacterial growth. These findings bring new insights into the adaptive immune response to Shigella infection and highlight the importance of pathogen-specific Th17 cell immunity for secondary immune protection.


Asunto(s)
Disentería Bacilar/inmunología , Interleucina-17/biosíntesis , Shigella flexneri/inmunología , Subgrupos de Linfocitos T/inmunología , Subgrupos de Linfocitos T/microbiología , Linfocitos T Colaboradores-Inductores/inmunología , Linfocitos T Colaboradores-Inductores/microbiología , Animales , Células Cultivadas , Disentería Bacilar/microbiología , Disentería Bacilar/prevención & control , Epítopos Inmunodominantes/inmunología , Memoria Inmunológica , Ratones , Ratones Endogámicos C57BL , Ratones Noqueados , Ratones Transgénicos , Subgrupos de Linfocitos T/metabolismo , Linfocitos T Colaboradores-Inductores/metabolismo , Células TH1/inmunología , Células TH1/metabolismo , Células TH1/microbiología , Células Th2/inmunología , Células Th2/metabolismo , Células Th2/microbiología
16.
Front Microbiol ; 13: 840236, 2022.
Artículo en Inglés | MEDLINE | ID: mdl-35185854

RESUMEN

Staphylococcus aureus causes severe, life-threatening infections that often are complicated by severe local and systemic pathologies with non-healing lesions. A classic example is S. aureus infective endocarditis (IE), where the secreted hemolysin ß-toxin potentiates the disease via its sphingomyelinase and biofilm ligase activities. Although these activities dysregulate human aortic endothelial cell activation, ß-toxin effect on endothelial cell function in wound healing has not been addressed. With the use of the ex vivo rabbit aortic ring model, we provide evidence that ß-toxin prevents branching microvessel formation, highlighting its ability to interfere with tissue re-vascularization and vascular repair. We show that ß-toxin specifically targets both human aortic endothelial cell proliferation and cell migration and inhibits human umbilical vein endothelial cell rearrangement into capillary-like networks in vitro. Proteome arrays specific for angiogenesis-related molecules provided evidence that ß-toxin promotes an inhibitory profile in endothelial cell monolayers, specifically targeting production of TIMP-1, TIMP-4, and IGFBP-3 to counter the effect of a pro-angiogenic environment. Dysregulation in the production of these molecules is known to result in sprouting defects (including deficient cell proliferation, migration, and survival), vessel instability and/or vascular regression. When endothelial cells are grown under re-endothelialization/wound healing conditions, ß-toxin decreases the pro-angiogenic molecule MMP-8 and increases the anti-angiogenic molecule endostatin. Altogether, the data indicate that ß-toxin is an anti-angiogenic virulence factor and highlight a mechanism where ß-toxin exacerbates S. aureus invasive infections by interfering with tissue re-vascularization and vascular repair.

17.
Front Cell Infect Microbiol ; 12: 925914, 2022.
Artículo en Inglés | MEDLINE | ID: mdl-35860377

RESUMEN

Infective endocarditis (IE) is one of the most feared and lethal diseases caused by Staphylococcus aureus. Once established, the infection is fast-progressing and tissue destructive. S. aureus of the clonal complex 5 (CC5) commonly cause IE yet are severely understudied. IE results from bacterial colonization and formation of tissue biofilms (known as vegetations) on injured or inflamed cardiac endothelium. S. aureus IE is promoted by adhesins, coagulases, and superantigens, with the exotoxins and exoenzymes likely contributing to tissue destruction and dissemination. Expression of the large repertoire of virulence factors required for IE and sequelae is controlled by complex regulatory networks. We investigated the temporal expression of the global regulators agr (RNAIII), rot, sarS, sarA, sigB, and mgrA in 8 invasive CC5 isolates and established intrinsic expression patterns associated with IE outcomes. We show that vegetation formation, as tested in the rabbit model of IE, inversely correlates with RNAIII and sarA expression during growth in Todd-Hewitt broth (TH). Large vegetations with severe sequelae arise from strains with high-level expression of colonization factors but slower transition towards expression of the exotoxins. Overall, strains proficient in vegetation formation, a hallmark of IE, exhibit lower expression of RNAIII and sarA. Simultaneous high expression of RNAIII, sarA, sigB, and mgrA is the one phenotype assessed in this study that fails to promote IE. Thus, RNAIII and sarA expression that provides for rheostat control of colonization and virulence genes, rather than an on and off switch, promote both vegetation formation and lethal sepsis.


Asunto(s)
Endocarditis Bacteriana , Endocarditis , Infecciones Estafilocócicas , Animales , Proteínas Bacterianas/genética , Proteínas Bacterianas/metabolismo , Endocarditis/microbiología , Endocarditis Bacteriana/microbiología , Exotoxinas , Regulación Bacteriana de la Expresión Génica , ARN Bacteriano , Conejos , Infecciones Estafilocócicas/microbiología , Staphylococcus aureus
18.
Sci Adv ; 8(19): eabo1072, 2022 May 13.
Artículo en Inglés | MEDLINE | ID: mdl-35544579

RESUMEN

The superantigen staphylococcal enterotoxin C (SEC) is critical for Staphylococcus aureus infective endocarditis (SAIE) in rabbits. Superantigenicity, its hallmark function, was proposed to be a major underlying mechanism driving SAIE but was not directly tested. With the use of S. aureus MW2 expressing SEC toxoids, we show that superantigenicity does not sufficiently account for vegetation growth, myocardial inflammation, and acute kidney injury in the rabbit model of native valve SAIE. These results highlight the critical contribution of an alternative function of superantigens to SAIE. In support of this, we provide evidence that SEC exerts antiangiogenic effects by inhibiting branching microvessel formation in an ex vivo rabbit aortic ring model and by inhibiting endothelial cell expression of one of the most potent mediators of angiogenesis, VEGF-A. SEC's ability to interfere with tissue revascularization and remodeling after injury serves as a mechanism to promote SAIE and its life-threatening systemic pathologies.

20.
J Bacteriol ; 192(7): 1912-20, 2010 Apr.
Artículo en Inglés | MEDLINE | ID: mdl-20139191

RESUMEN

Neisseria gonorrhoeae produces a type IV secretion system that secretes chromosomal DNA. The secreted DNA is active in the transformation of other gonococci in the population and may act to transfer antibiotic resistance genes and variant alleles for surface antigens, as well as other genes. We observed that gonococcal variants that produced type IV pili secreted more DNA than variants that were nonpiliated, suggesting that the process may be regulated. Using microarray analysis, we found that a piliated strain showed increased expression of the gene for the putative type IV secretion coupling protein TraD, whereas a nonpiliated variant showed increased expression of genes for transcriptional and translational machinery, consistent with its higher growth rate compared to that of the piliated strain. These results suggested that type IV secretion might be controlled by either traD expression or growth rate. A mutant with a deletion in traD was found to be deficient in DNA secretion. Further mutation and complementation analysis indicated that traD is transcriptionally and translationally coupled to traI, which encodes the type IV secretion relaxase. We were able to increase DNA secretion in a nonpiliated strain by inserting a gene cassette with a strong promoter to drive the expression of the putative operon containing traI and traD. Together, these data suggest a model in which the type IV secretion system apparatus is made constitutively, while its activity is controlled through regulation of traD and traI.


Asunto(s)
Proteínas Bacterianas/biosíntesis , Fimbrias Bacterianas/fisiología , Regulación Bacteriana de la Expresión Génica , Expresión Génica , Proteínas de Transporte de Membrana/biosíntesis , Neisseria gonorrhoeae/fisiología , ADN Bacteriano/metabolismo , Eliminación de Gen , Prueba de Complementación Genética , Humanos , Proteínas de Transporte de Membrana/genética , Neisseria gonorrhoeae/genética , Análisis de Secuencia por Matrices de Oligonucleótidos
SELECCIÓN DE REFERENCIAS
DETALLE DE LA BÚSQUEDA