Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 12 de 12
Filtrar
1.
Gut ; 71(7): 1373-1385, 2022 07.
Artículo en Inglés | MEDLINE | ID: mdl-34266968

RESUMEN

OBJECTIVE: Sodium+/ taurocholate cotransporting polypeptide (NTCP) is a membrane transporter affecting the enterohepatic circulation of bile acids (BAs). We aimed to evaluate NTCP's roles in humans and animal models of liver fibrosis (LF). DESIGN: Primary hepatic stellate cells (pHSCs) isolated from livers biopsies of patients with LF with different fibrosis grading were stained for NTCP. NTCP gene silencing, taurocholic acid (TCA), obeticholic acid (OCA), epigallocatechin gallate (EGCG) and HA-100 dihydrochloride (HA-100) were used as tools to modulate NTCP expression on human HSC line (LX2). BA trafficking/uptake were assessed extracellularly (LX2 culture medium) and intracellularly following treatment with/without NTCP neutralizing antibody. LF models of C57/BL6 mice of carbon tetrachloride (CCl4) and leptin-deficient (Ob/Ob) fed with high-fat diet (Ob/Ob HFD ) were evaluated for pHSCs-NTCP expressions, metabolic and LF profiles following intraperitoneal injections of NTCP neutralizing antibody. RESULTS: pHSCs from F3/F4-scored patients of LF exhibit threefold increased NTCP expressions compared with F0-scored patients (p<0.0001). Sorted-activated HSCs (LX2αSMA+) showed high expressions of NTCP and high TCA uptake in vitro and triggered a further increase in their activations. This phenomenon was inhibited with NTCP small interfering RNA and the NTCP neutralizing antibody. Sorted LX2NTCP+ (high alpha smooth muscle actin (αSMA)/high NTCP) cells showed high phosphorylated pathways of AKT/mTOR and protein kinase C (PKC) accompanied with a decrease in farnesoid X receptor expression. Moreover, LX2NTCP+ cells treated with EGCG, OCA and PKC inhibitor HA-100 significantly decreased NTCP and αSMA. NTCP neutralizing antibody inhibited NTCP (less TCA uptake); it attenuated LF in both CCl4 and Ob/Ob HFD animal models with ameliorated metabolic profile. CONCLUSION: NTCP expression is linearly correlated with fibrosis severity. Modulated BA trafficking could be an important step in LF pathogenesis. Antagonising BA uptake may suggest a therapeutic strategy for preventing disease progression.


Asunto(s)
Hígado , Simportadores , Animales , Anticuerpos Neutralizantes , Ácidos y Sales Biliares/metabolismo , Fibrosis , Humanos , Hígado/metabolismo , Cirrosis Hepática/tratamiento farmacológico , Cirrosis Hepática/metabolismo , Ratones , Transportadores de Anión Orgánico Sodio-Dependiente/genética , Péptidos/metabolismo , Sodio/metabolismo , Simportadores/genética , Ácido Taurocólico/metabolismo
2.
Gastroenterology ; 159(3): 999-1014.e9, 2020 09.
Artículo en Inglés | MEDLINE | ID: mdl-32450149

RESUMEN

BACKGROUND & AIMS: Development of nonalcoholic steatohepatitis (NASH) is associated with reductions in hepatic microRNA122 (MIR122); the RAR related orphan receptor A (RORA) promotes expression of MIR122. Increasing expression of RORA in livers of mice increases expression of MIR122 and reduces lipotoxicity. We investigated the effects of a RORA agonist in mouse models of NASH. METHODS: We screened a chemical library to identify agonists of RORA and tested their effects on a human hepatocellular carcinoma cell line (Huh7). C57BL/6 mice were fed a chow or high-fat diet (HFD) for 4 weeks to induce fatty liver. Mice were given hydrodynamic tail vein injections of a MIR122 antagonist (antagomiR-122) or a control antagomiR once each week for 3 weeks while still on the HFD or chow diet, or intraperitoneal injections of the RORA agonist RS-2982 or vehicle, twice each week for 3 weeks. Livers, gonad white adipose, and skeletal muscle were collected and analyzed by reverse-transcription polymerase chain reaction, histology, and immunohistochemistry. A separate group of mice were fed an atherogenic diet, with or without injections of RS-2982 for 3 weeks; livers were analyzed by immunohistochemistry, and plasma was analyzed for levels of aminotransferases. We analyzed data from liver tissues from patients with NASH included in the RNA-sequencing databases GSE33814 and GSE89632. RESULTS: Injection of mice with antagomiR-122 significantly reduced levels of MIR122 in plasma, liver, and white adipose tissue; in mice on an HFD, antagomiR-122 injections increased fat droplets and total triglyceride content in liver and reduced ß-oxidation and energy expenditure, resulting in significantly more weight gain than in mice given the control microRNA. We identified RS-2982 as an agonist of RORA and found it to increase expression of MIR122 promoter activity in Huh7 cells. In mice fed an HFD or atherogenic diet, injections of RS-2982 increased hepatic levels of MIR122 precursors and reduced hepatic synthesis of triglycerides by reducing expression of biosynthesis enzymes. In these mice, RS-2982 significantly reduced hepatic lipotoxicity, reduced liver fibrosis, increased insulin resistance, and reduced body weight compared with mice injected with vehicle. Patients who underwent cardiovascular surgery had increased levels of plasma MIR122 compared to its levels before surgery; increased expression of plasma MIR122 was associated with increased levels of plasma free fatty acids and levels of RORA. CONCLUSIONS: We identified the compound RS-2982 as an agonist of RORA that increases expression of MIR122 in cell lines and livers of mice. Mice fed an HFD or atherogenic diet given injections of RS-2982 had reduced hepatic lipotoxicity, liver fibrosis, and body weight compared with mice given the vehicle. Agonists of RORA might be developed for treatment of NASH.


Asunto(s)
Reguladores del Metabolismo de Lípidos/farmacología , MicroARNs/genética , Enfermedad del Hígado Graso no Alcohólico/tratamiento farmacológico , Miembro 1 del Grupo F de la Subfamilia 1 de Receptores Nucleares/agonistas , Obesidad/tratamiento farmacológico , Animales , Antagomirs/administración & dosificación , Benzamidas/farmacología , Benzamidas/uso terapéutico , Peso Corporal , Línea Celular Tumoral , Conjuntos de Datos como Asunto , Dieta Alta en Grasa/efectos adversos , Modelos Animales de Enfermedad , Ácidos Grasos no Esterificados/sangre , Ácidos Grasos no Esterificados/metabolismo , Humanos , Resistencia a la Insulina , Metabolismo de los Lípidos/efectos de los fármacos , Metabolismo de los Lípidos/genética , Reguladores del Metabolismo de Lípidos/uso terapéutico , Hígado/efectos de los fármacos , Hígado/patología , Masculino , Ratones , MicroARNs/antagonistas & inhibidores , MicroARNs/sangre , Mutación , Enfermedad del Hígado Graso no Alcohólico/etiología , Enfermedad del Hígado Graso no Alcohólico/metabolismo , Enfermedad del Hígado Graso no Alcohólico/patología , Miembro 1 del Grupo F de la Subfamilia 1 de Receptores Nucleares/metabolismo , Obesidad/etiología , Obesidad/metabolismo , Obesidad/patología , Regiones Promotoras Genéticas/efectos de los fármacos , Regulación hacia Arriba/efectos de los fármacos
3.
BMC Gastroenterol ; 20(1): 102, 2020 Apr 10.
Artículo en Inglés | MEDLINE | ID: mdl-32276660

RESUMEN

BACKGROUND: Low 25-Hydroxy-vitamin-D; "25(OH)-D3" serum and vitamin D receptor (VDR) levels were recently correlated to advanced fibrosis. However, VDR mechanism in liver fibrosis modulations is not well understood. In this study, we aimed to evaluate changes in liver NK cells cytotoxicity due to modulations in VDR in CCl4 fibrosis model following 25(OH) D3 injections. METHODS: Carbon-tetrachloride (CCl4) hepatic-fibrosis was induced in BALB/c mice for 1 and 4 weeks as an acute and chronic fibrosis model, respectively. Along 1th to 4th weeks, vitamin D were i.p injected/2x week. Liver were assessed histologically and for proteins quantification for VDR and αSMA expressions. In vitro, potential killing of NK cells were evaluated following co-culture with primary-hepatic-stellate-cells (pHSCs) obtained from BALB/c WT-mice. RESULTS: Systemic inflammation and hepatic-fibrosis increased along 4 weeks of CCl4 as indicated by serum ALT and αSMA expressions (P < 0.02) as well as histological assessments, respectively. These results were associated with increased NK1.1 activations and hypercalcemia. While vitamin D administrations delayed fibrosis of early stages, vitamin D worsen hepatic-fibrosis of late stages of CCl4. In week 4, no further activations of NK cells were seen following vitamin D injections and were associated with down-expressions of VDR (1.7 Fold, P < 0.004) indicating the inability of vitamin D to ameliorate hepatic fibrosis. In vitro, NK cells from the chronic model of CCl4 did not affect pHSCs killing and fail to reduce fibrosis. CONCLUSION: Vitamin D alleviate liver NK cytotoxicity in acute but not in chronic fibrosis model due to modulations in vitamin D receptor and calcium. Hypercalcemia associated with late fibrosis may inhibited VDR levels, however, may not explain the profibrogenic effects of vitamin D.


Asunto(s)
Calcifediol/farmacología , Células Asesinas Naturales/efectos de los fármacos , Cirrosis Hepática/tratamiento farmacológico , Hígado/efectos de los fármacos , Receptores de Calcitriol/metabolismo , Vitaminas/farmacología , Enfermedad Aguda , Animales , Biomarcadores/metabolismo , Calcifediol/metabolismo , Calcifediol/uso terapéutico , Calcio/metabolismo , Enfermedad Crónica , Células Asesinas Naturales/metabolismo , Hígado/metabolismo , Hígado/patología , Cirrosis Hepática/metabolismo , Cirrosis Hepática/patología , Masculino , Ratones , Ratones Endogámicos BALB C , Vitaminas/metabolismo , Vitaminas/uso terapéutico
4.
Cytometry A ; 93(4): 427-435, 2018 04.
Artículo en Inglés | MEDLINE | ID: mdl-29517852

RESUMEN

Hepatic stellate cells (HSCs) are a central fibrogenic cell type that contributes to collagen accumulation during chronic liver disease. Peripheral blood lymphocytes from HCV patients are phagocytized by HSCs and induce their differentiation. This study aimed to characterize HSCs differentiation using a flow cytometry tool for fibrosis scoring. NK cells from healthy donors and from patients with chronic HCV with various severities of fibrosis were co-cultured with a human HSC line (LX2). LX2 phagocytosis of NK cells were stained for NK cells (CD45/CD56/CD3) and NK activation marker (CD107a) as well as INF-γ, apoptosis (Annexin-V) and α-smooth-muscle-actin (αSMA, as a marker of LX2 activation). In addition, reactive oxygen species (ROS) and the senescence marker P15 were analyzed prior to flow cytometry analysis. LX2 mono-cultures demonstrated a homogenous cell-population according to size (forward-scattered; FSC), granularity and αSMA expressions. However, on their co-culture with NK cells, the HSCs formed four subpopulations, which were stratified by αSMA intensities and cell size. NK cells isolated from heathy donors did not activate LX2-cells. In contrast, HCV exposed to NK cells from both F1 and F4 fibrosis grade patients, showed elevated CD107a and INF-γ levels and increased αSMA intensities in two of the four cell populations, with fibrosis scoring showing a linear correlation with αSMA intensities and NK phagocytosis. The αSMAintermediate /SizeLow HSCs sub-population showed higher proliferation following F4-NK cells with higher phagocytosis ability, suggesting an active/regulatory population. The αSMAhigh /Sizehigh subpopulations showed low proliferation and phagocytosis capacity, and were correlated with higher apoptosis, increased ROS and P15 intensities, suggesting senescing cells. Taken together, NK cells lead to heterogeneous differentiation of HSCs. Flow-cytometry may provide a novel means of characterizing HSCs in relation to the severity of liver fibrosis. © 2017 International Society for Advancement of Cytometry.


Asunto(s)
Diferenciación Celular/fisiología , Células Estrelladas Hepáticas/patología , Cirrosis Hepática/patología , Actinas/metabolismo , Adulto , Biomarcadores/metabolismo , Proliferación Celular/fisiología , Células Cultivadas , Técnicas de Cocultivo/métodos , Femenino , Citometría de Flujo/métodos , Células Estrelladas Hepáticas/metabolismo , Humanos , Interferón gamma/metabolismo , Células Asesinas Naturales/metabolismo , Células Asesinas Naturales/patología , Hígado/metabolismo , Hígado/patología , Cirrosis Hepática/metabolismo , Masculino , Fagocitosis/fisiología , Especies Reactivas de Oxígeno/metabolismo
5.
Front Pharmacol ; 14: 1219709, 2023.
Artículo en Inglés | MEDLINE | ID: mdl-37614321

RESUMEN

Background: Natural killer (NK) cells showed an anti-fibrotic effect; however, their function is thought to be impaired in advanced liver injury. In the current study, we aimed to assess the immune and metabolic impact of testosterone on mice models of liver injury. Methods: Carbon-tetrachloride induced liver fibrosis male mice models was i.p injected for 2 weeks (acute) and 4 weeks (chronic) (n = 36). Testosterone (4 mg/kg mouse body weight) was injected i.p. following the first week of the acute model of CCl4 and following the second week of the chronic model of CCl4. At the end of the experiments, mice were sacrificed, and serum was collected for assessing liver enzymes of ALT and AST, as well as inflammatory markers of IL-6, metabolic makers of C-peptide levels, and lipid and glucose profiles. Livers were harvested and used for histological assessments for inflammation and fibrosis. Fibrosis profiles from liver extracts, αSMA and Collagen III, were assessed by RT-PCR. Moreover, liver tissue-resident NK cells were isolated and evaluated for their activity by assessing INF-γ and IL-6 receptors using ELISA and flow cytometry, respectively. Results: Serum ALT, AST, and IL-6, as well as metabolic assessments of cholesterol, triglyceride, C-peptide, fasting blood sugar, and fibrotic profiles, were linearly correlated with disease progressions. Histological characterization of the liver was worsened in the chronic model of liver injury. Testosterone-treated mice exhibit a significant reduction in collagen depositions with less dense fibrosis tissue associated with reduced liver injury enzymes and metabolic markers in both the acute and chronic CCl4 mice models in favor of the latter one (p < 0.05). Moreover, testosterone treatments displayed a significant decrease in serum IL-6 of 2.4-fold (p = 0.0001) and 2.3-fold (p = 0.0003) in the acute and chronic models, respectively (p = 0.002), and data showed an increase in INF-γ release from NK associated with a reduction in their IL-6 receptor expressions (p < 0.05). Conclusion: Our results indicated effects of testosterone on mediating a decreased expressions of NK IL-6 receptors and consequently inducing their activation; which in part, could explain the amelioration of liver injury. Our data suggest an anti-inflammatory and anti-fibrotic treatment approach of using testosterone for delaying disease progressions.

6.
Front Pharmacol ; 14: 1180262, 2023.
Artículo en Inglés | MEDLINE | ID: mdl-37332348

RESUMEN

Background: Arum palaestinum Boiss (AP) is a wild plant in Palestine whose leaves have a long history as food and medicine in Middle Eastern countries. The current study aimed to evaluate the biological characteristics of AP flower extract, including its antimicrobial and coagulation cascade activities and its effects on anticancer molecular pathways. Methods: The antimicrobial activity of the aqueous extract of AP flowers was assessed using a microdilution assay against eight pathogens. The coagulation properties were assessed by prothrombin time (PT), activated partial thromboplastin time (aPTT), and thrombin time (TT) tests using standard hematological methods. The biological effects of AP on hepatocellular carcinoma were measured by assessing the impact of AP on cell cycle, proliferation (CFSE), apoptosis (annexin-v+/PI), and tumorigenicity (αFP and HBsAg), as well as its effects on the PI3K-AKT-mTOR molecular signaling pathway. Results: The antimicrobial screening results revealed that the aqueous extract of AP had potent antibacterial effects against P. vulgaris and E. faecium compared to ampicillin, with MIC values of 6.25, 6.25, and 18 µg/mL, respectively. Moreover, the AP aqueous extract exerted anticoagulant activity, with significant prolonged results in the aPTT and TT tests (25 µg/mL and 50 µg/mL, respectively) and slightly prolonged results in the PT test (50 µg/mL). The anticancer results indicated a delay in the cell cycle through decreased cell proliferation rates following incubation with AP fractions. The effect of the aqueous fraction was most evident in a delay in the S phase. The aqueous and DMSO fractions maintained the cells in the G2-M phase, similar to the DOX, while the flower extract in methanol accelerated the cells in the G2-M phase, suggesting that AF flower extracts may have anti-cancer properties. The aqueous extract of AP 1) reduced secretions of HCC αFP by 1.55-fold and 3.3-fold at the 50 and 100 µg/mL concentrations, respectively (p = 0.0008); 2) decreased phosphorylation in the PI3K-AKT-mTOR signaling pathway (p < 0.05); and 3) shifted cells from necrosis to apoptosis by 50% and 70% at the 50 and 100 µg/mL concentrations, respectively (p < 0.05). Conclusion: The results of this study showed the activities of the bioactive components for the treatment of infectious diseases and blood coagulation disorders, which could also be a potential therapeutic approach for delaying HCC tumorigenicity.

7.
JCI Insight ; 8(12)2023 06 22.
Artículo en Inglés | MEDLINE | ID: mdl-37345655

RESUMEN

ˆCCL24 is a pro-fibrotic, pro-inflammatory chemokine expressed in several chronic fibrotic diseases. In the liver, CCL24 plays a role in fibrosis and inflammation, and blocking CCL24 led to reduced liver injury in experimental models. We studied the role of CCL24 in primary sclerosing cholangitis (PSC) and evaluated the potential therapeutic effect of blocking CCL24 in this disease. Multidrug resistance gene 2-knockout (Mdr2-/-) mice demonstrated CCL24 expression in liver macrophages and were used as a relevant experimental PSC model. CCL24-neutralizing monoclonal antibody, CM-101, significantly improved inflammation, fibrosis, and cholestasis-related markers in the biliary area. Moreover, using spatial transcriptomics, we observed reduced proliferation and senescence of cholangiocytes following CCL24 neutralization. Next, we demonstrated that CCL24 expression was elevated under pro-fibrotic conditions in primary human cholangiocytes and macrophages, and it induced proliferation of primary human hepatic stellate cells and cholangiocytes, which was attenuated following CCL24 inhibition. Correspondingly, CCL24 was found to be highly expressed in liver biopsies of patients with PSC. CCL24 serum levels correlated with Enhanced Liver Fibrosis score, most notably in patients with high alkaline phosphatase levels. These results suggest that blocking CCL24 may have a therapeutic effect in patients with PSC by reducing liver inflammation, fibrosis, and cholestasis.


Asunto(s)
Quimiocina CCL24 , Colangitis Esclerosante , Colestasis , Animales , Humanos , Ratones , Colangitis Esclerosante/complicaciones , Fibrosis , Inflamación , Hígado
8.
Biomed Pharmacother ; 150: 112942, 2022 Jun.
Artículo en Inglés | MEDLINE | ID: mdl-35429743

RESUMEN

Ecballium elaterium (EE), widely used plant in Mediterranean medicine, showed anticancer activity. This study aimed to investigate EE effects on liver fibrosis in an animal model of thioacetamide (TAA). Intraperitoneal administration of TAA was performed twice weekly for four weeks in C57BL6J mice. Livers were extracted and serum were evaluated for inflammatory markers (H&E staining, ALT, AST, ALP), pro-inflammatory cytokines, fibrosis (Sirius red staining, Masson's trichrome, α-smooth muscle actin and collagen III), and metabolic (cholesterol, triglyceride, C-peptide, and fasting-blood-sugar) profiles. Glutathione, glutathione peroxidase, and catalase liver antioxidant markers were assessed. Tissue-resident NK cells from mice livers were functionally assessed for activating receptors and cytotoxicity. Compared to vehicle-treated mice, the TAA-induced liver injury showed attenuation in the histopathology outcome following EE treatment. In addition, EE-treated mice resulted in decreased serum levels of ALT, AST, and ALP, associated with a decrease in IL-20, TGF-ß, IL-17, IL-22 and MCP-1 concentrations. Moreover, EE-treated mice exhibited improved lipid profile of cholesterol, triglycerides, C-peptide, and FBS. EE treatment maintained GSH, GPX, and CAT liver antioxidant activity and led to elevated counts of tissue-resident NK (trNK) cells in the TAA-mice. Consequently, trNK demonstrated an increase in CD107a and IFN-γ with improved potentials to kill activated hepatic-stellate cells in an in vitro assay. EE exhibited antifibrotic and antioxidative effects, increased the number of trNK cells, and improved metabolic outcomes. This plant extract could be a targeted therapy for patients with advanced liver injury.


Asunto(s)
Estrés Oxidativo , Tioacetamida , Animales , Antioxidantes/metabolismo , Péptido C/efectos adversos , Péptido C/metabolismo , Modelos Animales de Enfermedad , Glutatión/metabolismo , Humanos , Células Asesinas Naturales/metabolismo , Hígado , Cirrosis Hepática/inducido químicamente , Cirrosis Hepática/tratamiento farmacológico , Cirrosis Hepática/metabolismo , Ratones , Tioacetamida/farmacología
9.
Biomed Pharmacother ; 156: 113885, 2022 Dec.
Artículo en Inglés | MEDLINE | ID: mdl-36265306

RESUMEN

Gundelia (G.) tournefortii has antibacterial, anti-inflammatory, and hypolipemic effects. We evaluated the anticancer effect of G. tournefortii in an hepatocellular carcinoma (HCC) mouse model of an HCC cell line (Hep3B) injected into NOD.CB17-Prkdc-SCID/NCrHsD male mice. Tumorigenicity was assessed by tumor size, histology, serum α-fetoprotein (αFP), and glypican 3 (GPC3). HCC-related gene expression of the cell cycle (Cyclin-dependent kinase inhibitor 2A (CDNK2A)), proliferation (MKI67), and platelet-derived growth factor receptor α (PDGFA) were measured. HCC cell cycle alterations, apoptosis, and antioxidant markers in serum and liver following treatment with G. tournefortii were determined. Signaling pathways of liver p53 and phosphorylated PI3K, AKT, and mTOR were also evaluated. Results indicate a significant increase in tumor size in HCC animals associated with elevated αFP, GPC3, and MKI67. Tumor markers of p53 and phosphorylated AKT/PI3K/mTOR signaling pathway were diminished, with less proliferating cells and reduced PDGFRA gene expression following G. tournefortii infection. H&E staining showed a remarkable reduction in inflammatory lesions in HCC mice treated with G. tournefortii. This result was in line with a significant delay in the G2/M phase of HCC-primary hepatocytes by 1.39- to 2.4-fold and reduced HCC necrosis associated with inhibited CDNK2A gene expression. Antioxidant activity was significantly lower in the HCC mice than in the control group. Moreover, G. tournefortii inhibited the HCC formation of 3D MCTS spheroids. G. tournefortii treatment markedly restored antioxidant levels and displayed anticancer and antiproliferative effects and could be a promising cancer therapy.


Asunto(s)
Asteraceae , Carcinoma Hepatocelular , Neoplasias Hepáticas , Animales , Masculino , Ratones , Antioxidantes/farmacología , Apoptosis , Carcinoma Hepatocelular/tratamiento farmacológico , Carcinoma Hepatocelular/genética , Carcinoma Hepatocelular/metabolismo , Ciclo Celular , División Celular , Línea Celular Tumoral , Proliferación Celular , Expresión Génica , Hepatocitos/metabolismo , Neoplasias Hepáticas/tratamiento farmacológico , Neoplasias Hepáticas/genética , Neoplasias Hepáticas/metabolismo , Ratones Endogámicos NOD , Ratones SCID , Fosfatidilinositol 3-Quinasas/metabolismo , Proteínas Proto-Oncogénicas c-akt/metabolismo , Serina-Treonina Quinasas TOR/metabolismo , Proteína p53 Supresora de Tumor/genética
10.
Int J Mol Med ; 44(6): 2256-2264, 2019 Dec.
Artículo en Inglés | MEDLINE | ID: mdl-31638172

RESUMEN

The Wnt/ß­catenin pathway confers a chain of molecular events in livers affected by non­alcoholic steatohepatitis (NASH). Namodenoson, a selective agonist of the A3 adenosine receptor (A3AR), which is highly expressed in pathological liver cells, induces a robust anti­inflammatory effect in the liver, mediated via the de­regulation of the Wnt/ß­catenin pathway. Namodenoson also acts as a liver protective agent by inhibiting ischemia/reperfusion injury. Based on these unique characteristics, we investigated the anti­NASH effect of Namodenoson in murine models of steatohepatitis and in the LX2 human hepatic stellate cell line (HSC). In the STAM model, Namodenoson significantly decreased the non­alcoholic fatty liver disease (NAFLD) activity score, NAS, demonstrating anti­inflammatory and anti­steatotic effects. In the carbon tetrachloride (CCl4) model, Namodenoson reversed alanine aminotransferase (ALT) to normal values and significantly improved liver inflammation and fibrosis, as well as the adiponectin and leptin levels. Namodenoson de­regulated the Wnt/ß­catenin pathway in the liver extracts of the CCl4 model mice and in the LX2 HSCs, manifested by a decrease in the expression of phosphoinositide 3­kinase (PI3K), nuclear factor κ­light­chain­enhancer of activated B cells (NF­κB), ß­catenin, lymphoid enhancer­binding factor 1 (Lef­1) and cyclin D1, and an increase in the expression level of glycogen synthase kinase 3ß (GSK­3ß). The fibrosis marker, α­smooth muscle actin (α­SMA) was also de­regulated, supporting the anti­fibrotic effect of Namodenoson. On the whole, the findings of this study demonstrate that Namodenoson exerts an anti­NASH effect mediated via the de­regulation of the PI3K/NF­κB/Wnt/ß­catenin signaling pathway. Thus, targeting A3AR may prove to be a novel direction in the pharmacotherapy of NAFLD/NASH.


Asunto(s)
Agonistas del Receptor de Adenosina A3/farmacología , Hígado/efectos de los fármacos , Enfermedad del Hígado Graso no Alcohólico/tratamiento farmacológico , Receptor de Adenosina A3/genética , Actinas/genética , Adiponectina/genética , Animales , Tetracloruro de Carbono/toxicidad , Modelos Animales de Enfermedad , Regulación de la Expresión Génica/efectos de los fármacos , Humanos , Leptina/genética , Hígado/metabolismo , Hígado/patología , Ratones , FN-kappa B/genética , Enfermedad del Hígado Graso no Alcohólico/inducido químicamente , Enfermedad del Hígado Graso no Alcohólico/genética , Enfermedad del Hígado Graso no Alcohólico/patología , Fosfatidilinositol 3-Quinasas/genética , Vía de Señalización Wnt/efectos de los fármacos
11.
Hepatol Commun ; 2(3): 285-298, 2018 03.
Artículo en Inglés | MEDLINE | ID: mdl-29507903

RESUMEN

Insulin resistance is a key risk factor in the progression of nonalcoholic fatty liver disease (NAFLD) and may lead to liver fibrosis. Natural killer (NK) cells are thought to exert an antifibrotic effect through their killing of activated hepatic stellate cells (HSCs). Here, we investigated how the interplay between NK cells and HSCs are modified by insulin resistance in NAFLD. Fresh peripheral blood NK cells (clusters of differentiation [CD]56dim, CD16+) were collected from 22 healthy adults and 72 patients with NAFLD not currently taking any medications and without signs of metabolic syndrome. NK cells were assessed for insulin receptor expressions and cytotoxic activity when cultured in medium with HSCs. Fibrosis severities in patients with NAFLD were correlated linearly with elevated serum proinflammatory cytokine expression and insulin resistance severity. At the same time, fibrosis severities inversely correlated with insulin receptor expressions on NK cells as well as with their cytotoxic activities determined by CD107a by flow cytometry. NK cells from donors exhibiting severe fibrosis and insulin resistance exhibited significant mammalian target of rapamycin and extracellular signal-regulated kinase depletion (through NK cell western blot quantitation), increased apoptosis, and failure to attenuate HSC activation in vitro. While exposure to insulin stimulated the cytotoxic activity of healthy NK cells, rapamycin prevented this effect and reduced NK insulin receptor expressions. Conclusion: Elevated insulin levels in F1 and F2 fibrosis enhances NK cell cytotoxic activity toward HSCs and prevents fibrosis progression by insulin receptors and downstream mammalian target of rapamycin and extracellular signal-regulated kinase pathways. At more advanced stages of insulin resistance (F3 and F4 fibrosis), impaired NK cell activity rooted in low insulin receptor expression and or low serum insulin levels could further deteriorate fibrosis and may likely lead to cirrhosis development. (Hepatology Communications 2018;2:285-298).

12.
PLoS One ; 10(7): e0132463, 2015.
Artículo en Inglés | MEDLINE | ID: mdl-26151749

RESUMEN

BACKGROUND: A high prevalence of thyroid papillary cancer was reported in hepatitis-C-virus (HCV) positive patients. However, the mechanistic role of hepatic-fibrosis in thyroid malignancy progressions is still unclear. AIM: We aimed to study the immune-modulatory interactions between thyroid papillary carcinoma and hepatic-fibrosis. METHODS: Hepatic-fibrosis was induced in nude-nu-male mice by intra-peritoneal administration of carbon-tetrachloride. To induce thyroid-tumor, a thyroid papillary carcinoma cell line (NPA) was injected subcutaneously in the backs. Fibrotic profile was estimated by α-smooth-muscle-actin (αSMA) expression in liver tissue extracts using western-blots and RT-PCR. Intra-hepatic NK cells were isolated and stained for NK activity (CD107a) by flow cytometry. Liver histopathology (H&E staining), thyroid tumor mass and serum alanine aminotransferase (ALT), serum vascular endothelial growth factor (VEGF) and free-T4 levels were also assessed. RESULTS: Ex-vivo: NPA cells were co-cultured with intra-hepatic NK cells isolated from fibrotic mice with/without the tumor were analyzed for CFSE-proliferations. Both tumor groups (with/without hepatic-fibrosis) excreted higher serum free T4 levels. Hepatic-fibrosis increased tumor weight and size and serum free-T4 levels. In addition, tumor induction increased liver injury (both hepatic-fibrosis, necro-inflammation and serum ALT levels). In addition, tumor-bearing animals with hepatic-fibrosis had increased NK activity. NPA tumor-bearing animals increased fibrosis in spite of increased NK activity; probably due to a direct effect through increased serum free-T4 excretions. Serum VEGF levels were significantly increased in the fibrotic- bearing tumor groups compared to the non-fibrotic groups. In-vitro, NK cells from fibrotic tumor-bearing animals reduced proliferation of NPA cells. This decrease is attributed to increase NK cells activity in the fibrotic animals with the NPA tumors. CONCLUSIONS: Our results propose that NK cells although were stimulated in advanced fibrosis with tumor, they lost their anti-tumor and anti-fibrotic activity probably due to secretions of T4 and VEFG and may explain increased risk of thyroid tumors in chronic HCV patients.


Asunto(s)
Carcinoma Papilar/complicaciones , Carcinoma Papilar/inmunología , Cirrosis Hepática/inmunología , Neoplasias de la Tiroides/complicaciones , Neoplasias de la Tiroides/inmunología , Animales , Tetracloruro de Carbono , Carcinogénesis/inmunología , Carcinogénesis/patología , Carcinoma Papilar/sangre , Carcinoma Papilar/patología , Línea Celular Tumoral , Proliferación Celular , Técnicas de Cocultivo , Células Asesinas Naturales/inmunología , Cirrosis Hepática/sangre , Cirrosis Hepática/inducido químicamente , Cirrosis Hepática/patología , Masculino , Ratones Desnudos , Neoplasias de la Tiroides/sangre , Neoplasias de la Tiroides/patología , Tiroxina/metabolismo , Carga Tumoral , Factor A de Crecimiento Endotelial Vascular/sangre
SELECCIÓN DE REFERENCIAS
DETALLE DE LA BÚSQUEDA