RESUMEN
Disruption of the potassium/chloride cotransporter 3 (KCC3), encoded by the SLC12A6 gene, causes hereditary motor and sensory neuropathy associated with agenesis of the corpus callosum (HMSN/ACC), a neurodevelopmental and neurodegenerative disorder affecting both the peripheral nervous system and CNS. However, the precise role of KCC3 in the maintenance of ion homeostasis in the nervous system and the pathogenic mechanisms leading to HMSN/ACC remain unclear. We established two Slc12a6 Cre/LoxP transgenic mouse lines expressing C-terminal truncated KCC3 in either a neuron-specific or ubiquitous fashion. Our results suggest that neuronal KCC3 expression is crucial for axon volume control. We also demonstrate that the neuropathic features of HMSN/ACC are predominantly due to a neuronal KCC3 deficit, while the auditory impairment is due to loss of non-neuronal KCC3 expression. Furthermore, we demonstrate that KCC3 plays an essential role in inflammatory pain pathways. Finally, we observed hypoplasia of the corpus callosum in both mouse mutants and a marked decrease in axonal tracts serving the auditory cortex in only the general deletion mutant. Together, these results establish KCC3 as an important player in both central and peripheral nervous system maintenance.
Asunto(s)
Agenesia del Cuerpo Calloso/genética , Modelos Animales de Enfermedad , Neuropatía Hereditaria Motora y Sensorial/genética , Fenotipo , Simportadores/deficiencia , Agenesia del Cuerpo Calloso/metabolismo , Agenesia del Cuerpo Calloso/patología , Animales , Femenino , Neuropatía Hereditaria Motora y Sensorial/metabolismo , Neuropatía Hereditaria Motora y Sensorial/patología , Trastornos Heredodegenerativos del Sistema Nervioso/genética , Trastornos Heredodegenerativos del Sistema Nervioso/metabolismo , Trastornos Heredodegenerativos del Sistema Nervioso/patología , Masculino , Ratones , Ratones de la Cepa 129 , Ratones Endogámicos C57BL , Ratones Noqueados , Ratones Transgénicos , Neuronas/metabolismo , Neuronas/patología , Simportadores/biosíntesis , Simportadores/genéticaRESUMEN
Missense and protein-truncating mutations of the human potassium-chloride co-transporter 3 gene (KCC3) cause hereditary motor and sensory neuropathy with agenesis of the corpus callosum (HMSN/ACC), which is a severe neurodegenerative disease characterized by axonal dysfunction and neurodevelopmental defects. We previously reported that KCC3-truncating mutations disrupt brain-type creatine kinase-dependent activation of the co-transporter through the loss of its last 140 amino acids. Here, we report a novel and more distal HMSN/ACC-truncating mutation (3402C â T; R1134X) that eliminates only the last 17 residues of the protein. This small truncation disrupts the interaction with brain-type creatine kinase in mammalian cells but also affects plasma membrane localization of the mutant transporter. Although it is not truncated, the previously reported HMSN/ACC-causing 619C â T (R207C) missense mutation also leads to KCC3 loss of function in Xenopus oocyte flux assay. Immunodetection in Xenopus oocytes and in mammalian cultured cells revealed a decreased amount of R207C at the plasma membrane, with significant retention of the mutant proteins in the endoplasmic reticulum. In mammalian cells, curcumin partially corrected these mutant protein mislocalizations, with more protein reaching the plasma membrane. These findings suggest that mis-trafficking of mutant protein is an important pathophysiological feature of HMSN/ACC causative KCC3 mutations.
Asunto(s)
Agenesia del Cuerpo Calloso/metabolismo , Sustitución de Aminoácidos , Neuropatía Hereditaria Motora y Sensorial/metabolismo , Mutación Missense , Proteínas del Tejido Nervioso/metabolismo , Simportadores/metabolismo , Agenesia del Cuerpo Calloso/genética , Secuencia de Aminoácidos , Animales , Células HeLa , Neuropatía Hereditaria Motora y Sensorial/genética , Humanos , Proteínas del Tejido Nervioso/genética , Transporte de Proteínas , Eliminación de Secuencia , Simportadores/genética , Xenopus laevisRESUMEN
The potassium-chloride co-transporter 3 (KCC3) is mutated in hereditary motor and sensory neuropathy with agenesis of the corpus callosum (HMSN/ACC); however, the molecular mechanisms of HMSN/ACC pathogenesis and the exact role of KCC3 in the development of the nervous system remain poorly understood. The functional regulation of this transporter by protein partners is also largely unknown. Using a yeast two-hybrid approach, we discovered that the C-terminal domain (CTD) of KCC3, which is lost in most HMSN/ACC-causing mutations, directly interacts with brain-specific creatine kinase (CK-B), an ATP-generating enzyme that is also a partner of KCC2. The interaction of KCC3 with CK-B was further confirmed by in vitro glutathione S-transferase pull-down assay, followed by sequencing of the pulled-down complexes. In transfected cultured cells, immunofluorescence labeling showed that CK-B co-localizes with wild-type KCC3, whereas the kinase fails to interact with the inactive truncated KCC3. Finally, CK-B's inhibition by DNFB results in reduction of activity of KCC3 in functional assays using Xenopus laevis oocytes. This physical and functional association between the co-transporter and CK-B is, therefore, the first protein-protein interaction identified to be potentially involved in the pathophysiology of HMSN/ACC.
Asunto(s)
Forma BB de la Creatina-Quinasa/metabolismo , Neuropatía Hereditaria Motora y Sensorial/metabolismo , Simportadores/genética , Simportadores/metabolismo , Secuencia de Aminoácidos , Animales , Encéfalo/metabolismo , Femenino , Células HeLa , Humanos , Ratones , Datos de Secuencia Molecular , Mutación , Oocitos/metabolismo , Unión Proteica , Simportadores/química , Técnicas del Sistema de Dos Híbridos , Xenopus laevisRESUMEN
The regulatory circuits that orchestrate mammalian myoblast cell fusion during myogenesis are poorly understood. The transcriptional activity of FoxO1a directly regulates this process, yet the molecular mechanisms governing FoxO1a activity during muscle cell differentiation remain unknown. Here we show an autoregulatory loop in which FoxO1a directly activates transcription of the cyclic GMP-dependent protein kinase I (cGKI) gene and where the ensuing cGKI activity phosphorylates FoxO1a and abolishes its DNA binding activity. These findings establish the FoxO1a-to-cGKI pathway as a novel feedback loop that allows the precise tuning of myoblast fusion. Interestingly, this pathway appears to operate independently of muscle cell differentiation programs directed by myogenic transcription factors.
Asunto(s)
Proteínas Quinasas Dependientes de GMP Cíclico/metabolismo , Mioblastos/citología , Mioblastos/metabolismo , Factores de Transcripción/metabolismo , Secuencia de Aminoácidos , Animales , Diferenciación Celular , Fusión Celular , Células Cultivadas , Proteínas Quinasas Dependientes de GMP Cíclico/antagonistas & inhibidores , Proteínas Quinasas Dependientes de GMP Cíclico/genética , ADN/metabolismo , Proteína Forkhead Box O1 , Factores de Transcripción Forkhead , Humanos , Ratones , Datos de Secuencia Molecular , Fosforilación , Unión Proteica , Alineación de Secuencia , Transducción de Señal , Factores de Transcripción/química , Factores de Transcripción/genética , Transcripción Genética/genéticaRESUMEN
Somatic motor neurons in the hypoglossal nucleus innervate tongue muscles controlling vital functions such as chewing, swallowing and respiration. Formation of functional hypoglossal nerve circuits depends on the establishment of precise hypoglossal motor neuron maps correlating with specific tongue muscle innervations. Little is known about the molecular mechanisms controlling mammalian hypoglossal motor neuron topographic map formation. Here we show that combinatorial expression of transcription factors Runx1, SCIP and FoxP1 defines separate mouse hypoglossal motor neuron groups with different topological, neurotransmitter and calcium-buffering phenotypes. Runx1 and SCIP are coexpressed in ventromedial hypoglossal motor neurons involved in control of tongue protrusion whereas FoxP1 is expressed in dorsomedial motor neurons associated with tongue retraction. Establishment of separate hypoglossal motor neuron maps depends in part on Runx1-mediated suppression of ventrolateral and dorsomedial motor neuron phenotypes and regulation of FoxP1 expression pattern. These findings suggest that combinatorial actions of Runx1, SCIP and FoxP1 are important for mouse hypoglossal nucleus somatotopic map formation.
Asunto(s)
Regulación del Desarrollo de la Expresión Génica , Nervio Hipogloso/embriología , Nervio Hipogloso/metabolismo , Neuronas Motoras/metabolismo , Neuronas Motoras/fisiología , Animales , Subunidad alfa 2 del Factor de Unión al Sitio Principal/metabolismo , Factores de Transcripción Forkhead/metabolismo , Ratones , Ratones Transgénicos , Factor 6 de Transcripción de Unión a Octámeros/metabolismo , Proteínas Represoras/metabolismo , Lengua/embriología , Lengua/inervaciónRESUMEN
Loss-of-function of the potassium-chloride cotransporter 3 (KCC3) causes hereditary motor and sensory neuropathy with agenesis of the corpus callosum (HMSN/ACC), a severe neurodegenerative disease associated with defective midline crossing of commissural axons in the brain. Conversely, KCC3 over-expression in breast, ovarian and cervical cancer is associated with enhanced tumor cell malignancy and invasiveness. We identified a highly conserved proline-rich sequence within the C-terminus of the cotransporter which when mutated leads to loss of the KCC3-dependent regulatory volume decrease (RVD) response in Xenopus Laevis oocytes. Using SH3 domain arrays, we found that this poly-proline motif is a binding site for SH3-domain containing proteins in vitro. This approach identified the guanine nucleotide exchange factor (GEF) Vav2 as a candidate partner for KCC3. KCC3/Vav2 physical interaction was confirmed using GST-pull down assays and immuno-based experiments. In cultured cervical cancer cells, KCC3 co-localized with the active form of Vav2 in swelling-induced actin-rich protruding sites and within lamellipodia of spreading and migrating cells. These data provide evidence of a molecular and functional link between the potassium-chloride co-transporters and the Rho GTPase-dependent actin remodeling machinery in RVD, cell spreading and cell protrusion dynamics, thus providing new insights into KCC3's involvement in cancer cell malignancy and in corpus callosum agenesis in HMSN/ACC.
Asunto(s)
Tamaño de la Célula , Extensiones de la Superficie Celular/metabolismo , Oocitos/citología , Proteínas Proto-Oncogénicas c-vav/metabolismo , Simportadores/metabolismo , Actinas/metabolismo , Secuencias de Aminoácidos , Secuencia de Aminoácidos , Animales , Tamaño de la Célula/efectos de los fármacos , Extensiones de la Superficie Celular/efectos de los fármacos , Secuencia Conservada , Células HeLa , Humanos , Soluciones Hipotónicas/farmacología , Datos de Secuencia Molecular , Proteínas Mutantes/metabolismo , Oocitos/efectos de los fármacos , Oocitos/metabolismo , Unión Proteica/efectos de los fármacos , Estructura Terciaria de Proteína , Simportadores/química , Xenopus laevisRESUMEN
BACKGROUND: Dorsoventral patterning of the developing spinal cord is important for the correct generation of spinal neuronal types. This process relies in part on cross-repressive interactions between specific transcription factors whose expression is regulated by Sonic hedgehog. Groucho/transducin-like Enhancer of split (TLE) proteins are transcriptional corepressors suggested to be recruited by at least certain Sonic hedgehog-controlled transcription factors to mediate the formation of spatially distinct progenitor domains within the ventral spinal cord. The aim of this study was to characterize the involvement of TLE in mechanisms regulating the establishment of the boundary between the most ventral spinal cord progenitor domains, termed pMN and p3. Because the pMN domain gives rise to somatic motor neurons while the p3 domain generates V3 interneurons, we also examined the involvement of TLE in the acquisition of these neuronal fates. METHODOLOGY AND PRINCIPAL FINDINGS: A combination of in vivo loss- and gain-of-function studies in the developing chick spinal cord was performed to characterize the role of TLE in ventral progenitor domain formation. It is shown here that TLE overexpression causes increased numbers of p3 progenitors and promotes the V3 interneuron fate while suppressing the motor neuron fate. Conversely, dominant-inhibition of TLE increases the numbers of pMN progenitors and postmitotic motor neurons. CONCLUSION: Based on these results, we propose that TLE is important to promote the formation of the p3 domain and subsequent generation of V3 interneurons.
Asunto(s)
Interneuronas/metabolismo , Neuronas Motoras/metabolismo , Células-Madre Neurales/metabolismo , Proteínas Represoras/metabolismo , Médula Espinal/citología , Transcripción Genética , Animales , Recuento de Células , Linaje de la Célula , Embrión de Pollo , Pollos , Proteínas Co-Represoras , Proteínas del Ojo/metabolismo , Genes Dominantes/genética , Células HEK293 , Proteína Homeobox Nkx-2.2 , Proteínas de Homeodominio/metabolismo , Humanos , Interneuronas/citología , Ratones , Mitosis , Modelos Biológicos , Neuronas Motoras/citología , Proteínas Mutantes/metabolismo , Células-Madre Neurales/citología , Factor de Transcripción PAX6 , Factores de Transcripción Paired Box/metabolismo , Médula Espinal/embriología , Médula Espinal/metabolismo , Factores de Transcripción/metabolismo , Proteínas de Pez CebraRESUMEN
Potassium/Chloride cotransporters are transmembrane proteins that regulate cell volume and control neuronal activity by transporting K(+) and Cl(-) ions across the plasma membrane. Potassium/Chloride cotransporter 3 (KCC3) mutations are responsible for hereditary motor and sensory neuropathy with agenesis of the corpus callosum (HMSN/ACC), which is a severe sensory and motor neuropathy. Two major splice variants, KCC3a and KCC3b, were shown to be expressed in adult mouse tissues. Although KCC3a is mainly expressed in the central nervous system (CNS), its specific cellular expression patterns have not been determined. Here, we used an approach combining in situ hybridization and immunohistochemical techniques to determine the cellular expression of KCC3 in the mouse CNS and showed that KCC3 is mainly expressed in neurons, including a subpopulation of interneurons. Finally, we showed that some non-neuronal cells, such as radial glial-like cells in the spinal cord, also express KCC3.