Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 4 de 4
Filtrar
Más filtros

Bases de datos
Tipo del documento
Asunto de la revista
País de afiliación
Intervalo de año de publicación
1.
New Phytol ; 209(1): 177-91, 2016 Jan.
Artículo en Inglés | MEDLINE | ID: mdl-26261921

RESUMEN

The mitotic checkpoint (MC) guards faithful sister chromatid segregation by monitoring the attachment of spindle microtubules to the kinetochores. When chromosome attachment errors are detected, MC delays the metaphase-to-anaphase transition through the inhibition of the anaphase-promoting complex/cyclosome (APC/C) ubiquitin ligase. In contrast to yeast and mammals, our knowledge on the proteins involved in MC in plants is scarce. Transient synchronization of root tips as well as promoter-reporter gene fusions were performed to analyze temporal and spatial expression of COPPER MODIFIED RESISTANCE1/PATRONUS1 (CMR1/PANS1) in developing Arabidopsis thaliana seedlings. Functional analysis of the gene was carried out, including CYCB1;2 stability in CMR1/PANS1 knockout and overexpressor background as well as metaphase-anaphase chromosome status. CMR1/PANS1 is transcriptionally active during M phase. Its deficiency provokes premature cell cycle exit and in consequence a rapid consumption of the number of meristematic cells in particular under stress conditions that are known to affect spindle microtubules. Root growth impairment is correlated with a failure to delay the onset of anaphase, resulting in anaphase bridges and chromosome missegregation. CMR1/PANS1 overexpression stabilizes the mitotic CYCB1;2 protein. Likely, CMR1/PANS1 coordinates mitotic cell cycle progression by acting as an APC/C inhibitor and plays a key role in growth adaptation to stress.


Asunto(s)
Adaptación Fisiológica , Proteínas de Arabidopsis/metabolismo , Arabidopsis/genética , Proteínas de Ciclo Celular/metabolismo , Aberraciones Cromosómicas , Anafase , Ciclosoma-Complejo Promotor de la Anafase/metabolismo , Arabidopsis/citología , Arabidopsis/fisiología , Proteínas de Arabidopsis/genética , Proteínas de Ciclo Celular/genética , División Celular , Cobre/metabolismo , Técnicas de Inactivación de Genes , Genes Reporteros , Cinetocoros , Meristema/citología , Meristema/genética , Meristema/fisiología , Metafase , Mitosis , Mutación , Fenotipo , Raíces de Plantas/citología , Raíces de Plantas/genética , Raíces de Plantas/fisiología , Estrés Fisiológico
2.
Plant Physiol ; 169(1): 549-59, 2015 Sep.
Artículo en Inglés | MEDLINE | ID: mdl-26162428

RESUMEN

Arabidopsis halleri is a model species for the study of plant adaptation to extreme metallic conditions. In this species, cadmium (Cd) tolerance seems to be constitutive, and the mechanisms underlying the trait are still poorly understood. A previous quantitative trait loci (QTL) analysis performed on A. halleri × Arabidopsis lyrata backcross population1 identified the metal-pump gene Heavy Metal ATPase4 as the major genetic determinant for Cd tolerance. However, although necessary, Heavy Metal ATPase4 alone is not sufficient for determining this trait. After fine mapping, a gene encoding a calcium(2+)/hydrogen(+) antiporter, cation/hydrogen(+) exchanger1 (CAX1), was identified as a candidate gene for the second QTL of Cd tolerance in A. halleri. Backcross population1 individuals displaying the A. halleri allele for the CAX1 locus exhibited significantly higher CAX1 expression levels compared with the ones with the A. lyrata allele, and a positive correlation between CAX1 expression and Cd tolerance was observed. Here, we show that this QTL is conditional and that it is only detectable at low external Ca concentration. CAX1 expression in both roots and shoots was higher in A. halleri than in the close Cd-sensitive relative species A. lyrata and Arabidopsis thaliana. Moreover, CAX1 loss of function in A. thaliana led to higher Cd sensitivity at low concentration of Ca, higher sensitivity to methylviologen, and stronger accumulation of reactive oxygen species after Cd treatment. Overall, this study identifies a unique genetic determinant of Cd tolerance in the metal hyperaccumulator A. halleri and offers a new twist for the function of CAX1 in plants.


Asunto(s)
Adaptación Fisiológica/efectos de los fármacos , Proteínas de Arabidopsis/metabolismo , Arabidopsis/fisiología , Cadmio/toxicidad , Segregación Cromosómica , Estrés Oxidativo/efectos de los fármacos , Arabidopsis/efectos de los fármacos , Arabidopsis/genética , Proteínas de Arabidopsis/genética , Calcio/farmacología , Clonación Molecular , Simulación por Computador , Dosificación de Gen , Regulación de la Expresión Génica de las Plantas/efectos de los fármacos , Genes de Plantas , Estudios de Asociación Genética , Marcadores Genéticos , Peróxido de Hidrógeno/metabolismo , Datos de Secuencia Molecular , Mutación/genética , Sitios de Carácter Cuantitativo
3.
New Phytol ; 201(3): 810-824, 2014 Feb.
Artículo en Inglés | MEDLINE | ID: mdl-24134393

RESUMEN

The exposure of plants to high concentrations of trace metallic elements such as copper involves a remodeling of the root system, characterized by a primary root growth inhibition and an increase in the lateral root density. These characteristics constitute easy and suitable markers for screening mutants altered in their response to copper excess. A forward genetic approach was undertaken in order to discover novel genetic factors involved in the response to copper excess. A Cu(2+) -sensitive mutant named copper modified resistance1 (cmr1) was isolated and a causative mutation in the CMR1 gene was identified by using positional cloning and next-generation sequencing. CMR1 encodes a plant-specific protein of unknown function. The analysis of the cmr1 mutant indicates that the CMR1 protein is required for optimal growth under normal conditions and has an essential role in the stress response. Impairment of the CMR1 activity alters root growth through aberrant activity of the root meristem, and modifies potassium concentration and hormonal balance (ethylene production and auxin accumulation). Our data support a putative role for CMR1 in cell division regulation and meristem maintenance. Research on the role of CMR1 will contribute to the understanding of the plasticity of plants in response to changing environments.


Asunto(s)
Adaptación Fisiológica/genética , Arabidopsis/genética , Arabidopsis/fisiología , Estrés Fisiológico/genética , Adaptación Fisiológica/efectos de los fármacos , Alelos , Arabidopsis/efectos de los fármacos , Proteínas de Arabidopsis/genética , Proteínas de Arabidopsis/metabolismo , Núcleo Celular/efectos de los fármacos , Núcleo Celular/metabolismo , Simulación por Computador , Cobre/toxicidad , ADN Bacteriano/genética , Genes de Plantas/genética , Proteínas Fluorescentes Verdes/metabolismo , Mutación/genética , Fenotipo , Reguladores del Crecimiento de las Plantas/metabolismo , Raíces de Plantas/efectos de los fármacos , Raíces de Plantas/genética , Raíces de Plantas/crecimiento & desarrollo , Sodio/metabolismo , Estrés Fisiológico/efectos de los fármacos , Fracciones Subcelulares/efectos de los fármacos , Fracciones Subcelulares/metabolismo
4.
J Exp Bot ; 57(12): 2967-83, 2006.
Artículo en Inglés | MEDLINE | ID: mdl-16916885

RESUMEN

Cadmium (Cd) tolerance seems to be a constitutive species-level trait in Arabidopsis halleri. In order to identify genes potentially implicated in Cd tolerance, a backcross (BC1) segregating population was produced from crosses between A. halleri ssp. halleri and its closest non-tolerant relative A. lyrata ssp. petraea. The most sensitive and tolerant genotypes of the BC1 were analysed on a transcriptome-wide scale by cDNA-amplified fragment length polymorphism (AFLP). A hundred and thirty-four genes expressed more in the root of tolerant genotypes than in sensitive genotypes were identified. Most of the identified genes showed no regulation in their expression when exposed to Cd in a hydroponic culture medium and belonged to diverse functional classes, including reactive oxygen species (ROS) detoxification, cellular repair, metal sequestration, water transport, signal transduction, transcription regulation, and protein degradation, which are discussed.


Asunto(s)
Arabidopsis/genética , Arabidopsis/metabolismo , Cadmio/metabolismo , Polimorfismo Genético , Arabidopsis/efectos de los fármacos , Cadmio/farmacología , Cruzamientos Genéticos , ADN Complementario/química , Perfilación de la Expresión Génica , Regulación de la Expresión Génica de las Plantas/efectos de los fármacos , Genotipo , Hidroponía , Datos de Secuencia Molecular , Raíces de Plantas/efectos de los fármacos , Raíces de Plantas/genética , Raíces de Plantas/metabolismo , Reacción en Cadena de la Polimerasa de Transcriptasa Inversa , Análisis de Secuencia de ADN , Transducción de Señal/efectos de los fármacos
SELECCIÓN DE REFERENCIAS
DETALLE DE LA BÚSQUEDA