Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 13 de 13
Filtrar
1.
J Struct Biol ; 202(3): 236-249, 2018 06.
Artículo en Inglés | MEDLINE | ID: mdl-29428557

RESUMEN

The Gram-negative bacterium Erwinia amylovora is the etiological agent of fire blight, a devastating disease which affects Rosaceae such as apple, pear and quince. The siderophore desferrioxamine E plays an important role in bacterial pathogenesis by scavenging iron from the host. DfoJ, DfoA and DfoC are the enzymes responsible for desferrioxamine production starting from lysine. We have determined the crystal structures of each enzyme in the desferrioxamine E pathway and demonstrate that the biosynthesis involves the concerted action of DfoJ, followed by DfoA and lastly DfoC. These data provide the first crystal structures of a Group II pyridoxal-dependent lysine decarboxylase, a cadaverine monooxygenase and a desferrioxamine synthetase. DfoJ is a homodimer made up of three domains. Each monomer contributes to the completion of the active site, which is positioned at the dimer interface. DfoA is the first structure of a cadaverine monooxygenase. It forms homotetramers whose subunits are built by two domains: one for FAD and one for NADP+ binding, the latter of which is formed by two subdomains. We propose a model for substrate binding and the role of residues 43-47 as gate keepers for FAD binding and the role of Arg97 in cofactors turnover. DfoC is the first structure of a desferrioxamine synthetase and the first of a multi-enzyme siderophore synthetase coupling an acyltransferase domain with a Non-Ribosomal Peptide Synthetase (NRPS)-Independent Siderophore domain (NIS).


Asunto(s)
Erwinia amylovora/química , Ácidos Hidroxámicos/química , Lactamas/química , Enfermedades de las Plantas/microbiología , Rosaceae/microbiología , Erwinia amylovora/patogenicidad , Frutas/parasitología , Ácidos Hidroxámicos/metabolismo , Hierro/química , Lactamas/metabolismo
2.
J Struct Biol ; 203(2): 109-119, 2018 08.
Artículo en Inglés | MEDLINE | ID: mdl-29605571

RESUMEN

Sorbitol-6-phosphate 2-dehydrogenases (S6PDH) catalyze the interconversion of d-sorbitol 6-phosphate to d-fructose 6-phosphate. In the plant pathogen Erwinia amylovora the S6PDH SrlD is used by the bacterium to utilize sorbitol, which is used for carbohydrate transport in the host plants belonging to the Amygdaloideae subfamily (e.g., apple, pear, and quince). We have determined the crystal structure of S6PDH SrlD at 1.84 Šresolution, which is the first structure of an EC 1.1.1.140 enzyme. Kinetic data show that SrlD is much faster at oxidizing d-sorbitol 6-phosphate than in reducing d-fructose 6-phosphate, however, equilibrium analysis revealed that only part of the d-sorbitol 6-phosphate present in the in vitro environment is converted into d-fructose 6-phosphate. The comparison of the structures of SrlD and Rhodobacter sphaeroides sorbitol dehydrogenase showed that the tetrameric quaternary structure, the catalytic residues and a conserved aspartate residue that confers specificity for NAD+ over NADP+ are preserved. Analysis of the SrlD cofactor and substrate binding sites identified residues important for the formation of the complex with cofactor and substrate and in particular the role of Lys42 in selectivity towards the phospho-substrate. The comparison of SrlD backbone with the backbone of 302 short-chain dehydrogenases/reductases showed the conservation of the protein core and identified the variable parts. The SrlD sequence was compared with 500 S6PDH sequences selected by homology revealing that the C-terminal part is more conserved than the N-terminal, the consensus of the catalytic tetrad (Y[SN]AGXA) and a not previously described consensus for the NAD(H) binding.


Asunto(s)
Proteínas Bacterianas/química , Proteínas Bacterianas/metabolismo , Erwinia amylovora/enzimología , Erwinia amylovora/metabolismo , Deshidrogenasas del Alcohol de Azúcar/química , Deshidrogenasas del Alcohol de Azúcar/metabolismo , Proteínas Bacterianas/genética , Erwinia amylovora/genética , Hexosafosfatos/metabolismo , Cinética , Rosaceae/microbiología , Deshidrogenasas del Alcohol de Azúcar/genética , Tomografía Computarizada por Rayos X
3.
Arch Microbiol ; 199(10): 1335-1344, 2017 Dec.
Artículo en Inglés | MEDLINE | ID: mdl-28695265

RESUMEN

The Erwinia genus comprises species that are plant pathogens, non-pathogen, epiphytes, and opportunistic human pathogens. Within the genus, Erwinia amylovora ranks among the top 10 plant pathogenic bacteria. It causes the fire blight disease and is a global threat to commercial apple and pear production. We analyzed the presence/absence of the E. amylovora genes reported to be important for pathogenicity towards Rosaceae within various Erwinia strains genomes. This simple bottom-up approach, allowed us to correlate the analyzed genes to pathogenicity, host specificity, and make useful considerations to drive targeted studies.


Asunto(s)
Erwinia amylovora/genética , Erwinia amylovora/patogenicidad , Enfermedades de las Plantas/microbiología , Rosaceae/microbiología , Erwinia amylovora/clasificación , Genes Bacterianos , Malus/microbiología , Pyrus/microbiología , Virulencia/genética
4.
Angew Chem Int Ed Engl ; 53(1): 299-304, 2014 Jan 03.
Artículo en Inglés | MEDLINE | ID: mdl-24375742

RESUMEN

The structures of two types of guanidine-quinoline copper complexes have been investigated by single-crystal X-ray crystallography, K-edge X-ray absorption spectroscopy (XAS), resonance Raman and UV/Vis spectroscopy, cyclic voltammetry, and density functional theory (DFT). Independent of the oxidation state, the two structures, which are virtually identical for solids and complexes in solution, resemble each other strongly and are connected by a reversible electron transfer at 0.33 V. By resonant excitation of the two entatic copper complexes, the transition state of the electron transfer is accessible through vibrational modes, which are coupled to metal-ligand charge transfer (MLCT) and ligand-metal charge transfer (LMCT) states.


Asunto(s)
Cobre/química , Espectroscopía de Resonancia por Spin del Electrón/métodos , Electroquímica , Modelos Moleculares , Estructura Molecular , Oxidación-Reducción , Difracción de Rayos X
5.
Acta Crystallogr F Struct Biol Commun ; 78(Pt 8): 289-296, 2022 Aug 01.
Artículo en Inglés | MEDLINE | ID: mdl-35924596

RESUMEN

Levansucrases are biotechnologically interesting fructosyltransferases due to their potential use in the enzymatic or chemo-enzymatic synthesis of glycosides of non-natural substrates relevant to pharmaceutical applications. The structure of Erwinia tasmaniensis levansucrase in complex with (S)-1,2,4-butanetriol and its biochemical characterization suggests the possible application of short aliphatic moieties containing polyols with defined stereocentres in fructosylation biotechnology. The structural information revealed that (S)-1,2,4-butanetriol mimics the natural substrate. The preference of the protein towards a specific 1,2,4-butanetriol enantiomer was assessed using microscale thermophoresis binding assays. Furthermore, the results obtained and the structural comparison of levansucrases and inulosucrases suggest that the fructose binding modes could differ in fructosyltransferases from Gram-positive and Gram-negative bacteria.


Asunto(s)
Antibacterianos , Bacterias Gramnegativas , Butanoles , Cristalografía por Rayos X , Erwinia , Bacterias Grampositivas , Hexosiltransferasas
6.
J Am Chem Soc ; 132(47): 16997-7003, 2010 Dec 01.
Artículo en Inglés | MEDLINE | ID: mdl-21062066

RESUMEN

Phosphine-modified thioester derivatives are shown to serve as efficient precursors to phosphine-stabilized ferrous acyl thiolato carbonyls, which replicate key structural features of the active site of the hydrogenase Hmd. The reaction of Ph(2)PC(6)H(4)C(O)SPh and sources of Fe(0) generates both Fe(SPh)(Ph(2)PC(6)H(4)CO)(CO)(3) (1) and the diferrous diacyl Fe(2)(SPh)(2)(CO)(3)(Ph(2)PC(6)H(4)CO)(2), which carbonylates to give 1. For the extremely bulky arylthioester Ph(2)PC(6)H(4)C(O)SC(6)H(3)-2,6-(2,4,6-trimethylphenyl)(2), oxidative addition is arrested and the Fe(0) adduct of the phosphine is obtained. Complex 1 reacts with cyanide to give Et(4)N[Fe(SPh)(Ph(2)PC(6)H(4)CO)(CN)(CO)(2)] (Et(4)N[2]). (13)C and (31)P NMR spectra indicate that substitution is stereospecific and cis to P. The IR spectrum of [2](-) in ν(CN) and ν(CO) regions very closely matches that for Hmd(CN). XANES and EXAFS measurements also indicate close structural and electronic similarity of Et(4)N[2] to the active site of wild-type Hmd. Complex 1 also stereospecifically forms a derivative with TsCH(2)NC, but the adduct is more labile than Et(4)N[2]. Tricarbonyl 1 was found to reversibly protonate to give a thermally labile derivative, IR measurements of which indicate that the acyl and thiolate ligands are probably not protonated in Hmd.


Asunto(s)
Dominio Catalítico , Hidrogenasas/química , Proteínas Hierro-Azufre/química , Modelos Moleculares , Compuestos Organometálicos/química , Cianuros/química , Compuestos Heterocíclicos/química , Methanococcus/enzimología , Fosfinas/química , Protones
7.
Int J Biol Macromol ; 127: 496-501, 2019 Apr 15.
Artículo en Inglés | MEDLINE | ID: mdl-30660564

RESUMEN

Erwinia tasmaniensis is an epiphytic bacterium related to the plant pathogen Erwinia amylovora, the etiological agent of fire blight. In this study the levansucrase from E. tasmaniensis (EtLsc) has been compared with the homologous enzyme from E. amylovora (EaLsc). We characterized the enzymatic activity and compared the products profile of both enzymes by High Performance Anion Exchange Chromatography coupled with Pulsed Amperometric Detector (HPAEC-PAD). Moreover we determined the crystal structure of EtLsc to understand the structural peculiarity causing the different product profiles of the two homologues. EtLsc exhibits increased efficiency in the production of FOS, resulting in a better catalyst for biotechnological synthesis than EaLsc. Based on our results, we propose that the role of this enzyme in the life cycle of the two bacteria is most likely related to survival, rather than linked to pathogenicity in E. amylovora.


Asunto(s)
Proteínas Bacterianas , Erwinia amylovora , Hexosiltransferasas , Análisis de Secuencia de ADN , Proteínas Bacterianas/genética , Proteínas Bacterianas/metabolismo , Erwinia amylovora/enzimología , Erwinia amylovora/genética , Hexosiltransferasas/genética , Hexosiltransferasas/metabolismo , Enfermedades de las Plantas/microbiología
9.
Proteins ; 68(3): 749-61, 2007 Aug 15.
Artículo en Inglés | MEDLINE | ID: mdl-17510959

RESUMEN

UreF is a protein that plays a role in the in vivo urease activation as a chaperone involved in the insertion of two Ni(2+) ions in the apo-urease active site. The molecular details of this process are unknown. In the absence of any molecular information on the UreF protein class, and as a step toward the comprehension of the relationships between UreF function and structure, we applied a structural modeling approach to infer useful biochemical knowledge on Bacillus pasteurii UreF (BpUreF). Similarity searches and multiple alignment of UreF protein sequences indicated that this class of proteins has a low homology with proteins of known structure. Fold recognition methods were therefore used to identify useful protein structural templates to model the structure of BpUreF. In particular, the templates belong to the class of GTPase-activating proteins. Modeling of BpUreF based on these templates was performed using the program MODELLER. The structure validation yielded good statistics, indicating that the model is plausible. This result suggests a role for UreF in urease active site biosynthesis as a regulator of the activity of UreG, a small G protein involved in the in vivo apo-urease activation process and established to catalyze GTP hydrolysis.


Asunto(s)
Proteínas Bacterianas/metabolismo , Proteínas Activadoras de GTPasa/metabolismo , Ureasa/metabolismo , Secuencia de Aminoácidos , Bacillus/enzimología , Proteínas Bacterianas/química , Sitios de Unión , Proteínas Activadoras de GTPasa/química , Hidrólisis , Datos de Secuencia Molecular , Filogenia , Conformación Proteica , Pliegue de Proteína , Homología de Secuencia de Aminoácido , Ureasa/biosíntesis , Ureasa/química
11.
Acta Crystallogr F Struct Biol Commun ; 72(Pt 12): 903-910, 2016 12 01.
Artículo en Inglés | MEDLINE | ID: mdl-27917839

RESUMEN

AmsI is a low-molecular-weight protein tyrosine phosphatase that regulates the production of amylovoran in the Gram-negative bacterium Erwinia amylovora, a specific pathogen of rosaceous plants such as apple, pear and quince. Amylovoran is an exopolysaccharide that is necessary for successful infection. In order to shed light on AmsI, its structure was solved at 1.57 Šresolution at the same pH as its highest measured activity (pH 5.5). In the active site, a water molecule, bridging between the catalytic Arg15 and the reaction-product analogue sulfate, might be representative of the water molecule attacking the phospho-cysteine intermediate in the second step of the reaction mechanism.


Asunto(s)
Arginina/química , Proteínas Bacterianas/química , Cisteína/química , Erwinia amylovora/química , Polisacáridos Bacterianos/química , Proteínas Tirosina Fosfatasas/química , Secuencia de Aminoácidos , Arginina/metabolismo , Proteínas Bacterianas/genética , Proteínas Bacterianas/metabolismo , Dominio Catalítico , Clonación Molecular , Cristalografía por Rayos X , Cisteína/metabolismo , Erwinia amylovora/enzimología , Escherichia coli/genética , Escherichia coli/metabolismo , Expresión Génica , Cinética , Modelos Moleculares , Plásmidos/química , Plásmidos/metabolismo , Polisacáridos Bacterianos/metabolismo , Unión Proteica , Conformación Proteica en Hélice alfa , Conformación Proteica en Lámina beta , Dominios y Motivos de Interacción de Proteínas , Estructura Terciaria de Proteína , Proteínas Tirosina Fosfatasas/genética , Proteínas Tirosina Fosfatasas/metabolismo , Proteínas Recombinantes/química , Proteínas Recombinantes/genética , Proteínas Recombinantes/metabolismo , Alineación de Secuencia , Homología de Secuencia de Aminoácido , Especificidad por Sustrato , Agua/química , Agua/metabolismo
12.
PLoS One ; 5(10): e13343, 2010 Oct 13.
Artículo en Inglés | MEDLINE | ID: mdl-20967224

RESUMEN

BACKGROUND: Trichinella spiralis is an unusual parasitic intracellular nematode causing dedifferentiation of the host myofiber. Trichinella proteomic analyses have identified proteins that act at the interface between the parasite and the host and are probably important for the infection and pathogenesis. Many parasitic proteins, including a number of metalloproteins are unique for the nematodes and trichinellids and therefore present good targets for future therapeutic developments. Furthermore, detailed information on such proteins and their function in the nematode organism would provide better understanding of the parasite-host interactions. METHODOLOGY/PRINCIPAL FINDINGS: In this study we report the identification, biochemical characterization and localization of a novel poly-cysteine and histidine-tailed metalloprotein (Ts-PCHTP). The native Ts-PCHTP was purified from T. spiralis muscle larvae that were isolated from infected rats as a model system. The sequence analysis showed no homology with other proteins. Two unique poly-cysteine domains were found in the amino acid sequence of Ts-PCHTP. This protein is also the first reported natural histidine tailed protein. It was suggested that Ts-PCHTP has metal binding properties. Total Reflection X-ray Fluorescence (TXRF) assay revealed that it binds significant concentrations of iron, nickel and zinc at protein:metal ratio of about 1:2. Immunohistochemical analysis showed that the Ts-PCHTP is localized in the cuticle and in all tissues of the larvae, but that it is not excreted outside the parasite. CONCLUSIONS/SIGNIFICANCE: Our data suggest that Ts-PCHTP is the first described member of a novel nematode poly-cysteine protein family and its function could be metal storage and/or transport. Since this protein family is unique for parasites from Superfamily Trichinelloidea its potential applications in diagnostics and treatment could be exploited in future.


Asunto(s)
Cisteína/metabolismo , Histidina/metabolismo , Metaloproteínas/metabolismo , Trichinella spiralis/metabolismo , Secuencia de Aminoácidos , Animales , Secuencia de Bases , Cromatografía en Gel , Dicroismo Circular , Cartilla de ADN , Electroforesis en Gel de Poliacrilamida , Técnica del Anticuerpo Fluorescente , Glicosilación , Interacciones Huésped-Parásitos , Metaloproteínas/química , Microscopía Electrónica de Transmisión , Datos de Secuencia Molecular , Ratas , Espectrometría de Masa por Láser de Matriz Asistida de Ionización Desorción
13.
Dalton Trans ; 39(12): 3057-64, 2010 Mar 28.
Artículo en Inglés | MEDLINE | ID: mdl-20221540

RESUMEN

The [Fe]-hydrogenase is an ideal system for studying the electronic properties of the low spin iron site that is common to the catalytic centres of all hydrogenases. Because they have no auxiliary iron-sulfur clusters and possess a cofactor containing a single iron centre, the [Fe]-hydrogenases are well suited for spectroscopic analysis of those factors required for the activation of molecular hydrogen. Specifically, in this study we shed light on the electronic and molecular structure of the iron centre by XAS analysis of [Fe]-hydrogenase from Methanocaldococcus jannashii and five model complexes (Fe(ethanedithiolate)(CO)(2)(PMe(3))(2), [K(18-crown-6)](2)[Fe(CN)(2)(CO)(3)], K[Fe(CN)(CO)(4)], K(3)[Fe(III)(CN)(6)], K(4)[Fe(II)(CN)(6)]). The different electron donors have a strong influence on the iron absorption K-edge energy position, which is frequently used to determine the metal oxidation state. Our results demonstrate that the K-edges of Fe(II) complexes, achieved with low-spin ferrous thiolates, are consistent with a ferrous centre in the [Fe]-hydrogenase from Methanocaldococcus jannashii. The metal geometry also strongly influences the XANES and thus the electronic structure. Using in silico simulation, we were able to reproduce the main features of the XANES spectra and describe the effects of individual donor contributions on the spectra. Thereby, we reveal the essential role of an unusual carbon donor coming from an acyl group of the cofactor in the determination of the electronic structure required for the activity of the enzyme.


Asunto(s)
Hidrogenasas/química , Proteínas Hierro-Azufre/química , Hierro/química , Modelos Moleculares , Proteínas Bacterianas/química , Carbono/química , Hidrógeno/química , Estructura Molecular , Oxidación-Reducción , Espectroscopía de Absorción de Rayos X
SELECCIÓN DE REFERENCIAS
DETALLE DE LA BÚSQUEDA