Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 2 de 2
Filtrar
Más filtros

Bases de datos
Tipo del documento
País de afiliación
Intervalo de año de publicación
1.
J Org Chem ; 66(24): 8204-10, 2001 Nov 30.
Artículo en Inglés | MEDLINE | ID: mdl-11722226

RESUMEN

Protection (O5') of 2',3'-anhydroadenosine with tert-butyldiphenylsilyl chloride and epoxide opening with dimethylboron bromide gave the 3'-bromo-3'-deoxy xylo isomer which was treated with benzylisocyanate to give the 2'-O-(N-benzylcarbamoyl) derivative. Ring closure gave the oxazolidinone, and successive deprotection concluded an efficient route to 3'-amino-3'-deoxyadenosine. Analogous treatment of the antibiotic tubercidin [7-deazaadenosine; 4-amino-7-(beta-D-ribofuranosyl)pyrrolo[2,3-d]pyrimidine] gave 3'-amino-3'-deoxytubercidin. Trifluoroacetylation of the 3'-amino function, elaboration of the heterocyclic amino group into a (1,2,4-triazol-4-yl) ring with N,N'-bis[(dimethylamino)methylene]hydrazine, and nucleophilic aromatic substitution with dimethylamine gave puromycin aminonucleoside [9-(3-amino-3-deoxy-beta-D-ribofuranosyl)-6-(dimethylamino)purine] and its 7-deaza analogue. Aminoacylation [BOC-(4-methoxy-L-phenylalanine)] and deprotection gave puromycin and 7-deazapuromycin. Most reactions gave high yields at or below ambient temperature. Equivalent inhibition of protein biosynthesis in a rabbit reticulocyte system and parallel growth inhibition of several bacteria were observed with the 7-aza/deaza pair. Replacement of N7 in the purine ring of puromycin by "CH" has no apparent effect on biological activity.


Asunto(s)
Antibióticos Antineoplásicos/síntesis química , Puromicina/síntesis química , Adenosina/química , Antimetabolitos Antineoplásicos/química , Sistema Libre de Células , Estabilidad de Medicamentos , Bacterias Gramnegativas/efectos de los fármacos , Bacterias Grampositivas/efectos de los fármacos , Pruebas de Sensibilidad Microbiana , Biosíntesis de Proteínas/efectos de los fármacos , Tubercidina/química
2.
Biochemistry ; 32(47): 12749-60, 1993 Nov 30.
Artículo en Inglés | MEDLINE | ID: mdl-8251496

RESUMEN

Ribonucleotide reductase (RDPR) from Escherichia coli is composed of two subunits, R1 and R2, and catalyzes the conversion of nucleotides to deoxynucleotides. The mechanism of inactivation of RDPR by 2'-azido-2'-deoxynucleoside 5'-diphosphate (N3UDP) has been examined using a variety of isotopically labeled derivatives: (1'-, 2'-, 3'-, or 4'-[2H])-N3UDPs and 2'-[15N3, 13C]-N3UDP. Electron paramagnetic resonance (EPR) and electron spin echo envelope modulation (ESEEM) spectroscopy studies using these compounds indicate that the 2' carbon-nitrogen bond to the azide moiety is cleaved prior to or upon formation of the nitrogen-centered radical derived from the azide moiety of N3UDP. EPR studies reveal no hyperfine interactions of the nitrogen-centered radical with the 1', 2', 3', or 4' hydrogens of N3UDP. ESEEM studies however, reveal that the 1' and 4' deuterons are 3.3 +/- 0.2 and 2.6 +/- 0.3 A, respectively, from the nitrogen-centered radical. Further support for carbon-nitrogen bond cleavage is derived from studies of the interaction of oxidized R1, C225SR1, and C462SR1 with R2 and N3UDP. In all three cases, in contrast to the results with the wild type R1, azide is detected. Nitrogen-centered radical is not observed with either oxidized R1 or C225SR1 but is observed with C462SR1. These results suggest that C225 is required for the conversion of azide into N2 and a nitrogen-centered radical. The dynamics of the inactivation of RDPR by N3UDP have also been examined. Use of [3'-2H]N3UDP reveals an isotope effect of approximately 2 on the loss of the tyrosyl radical and the rate of inactivation of RDPR. In both cases the kinetics are complex, suggesting multiple modes of inactivation. In addition, several modes of inactivation are required to explain the observation that loss of the tyrosyl radical is slower than the rate of inactivation. Studies using [5'-3H]N3UDP reveal that the rapid inactivation is the result of the formation of a tight noncovalent complex between modified nucleotide, nitrogen-centered radical and RDPR. Destruction of the nitrogen-centered radical is a slow process which appears to be accompanied by decomposition of the modified nucleotide into PPi, uracil, and 2-methylene-3(2H)-furanone. The latter covalently modifies R1 and ultimately leads to loss of approximately 50% of the activity of R1.


Asunto(s)
Azidas/metabolismo , Nucleótidos de Desoxiuracil/metabolismo , Escherichia coli/enzimología , Ribonucleótido Reductasas/antagonistas & inhibidores , Cisteína/genética , Cisteína/metabolismo , Deuterio , Espectroscopía de Resonancia por Spin del Electrón , Radicales Libres , Modelos Químicos , Mutación , Nitrógeno/metabolismo , Ribonucleótido Reductasas/genética , Ribonucleótido Reductasas/metabolismo , Marcadores de Spin , Tirosina/metabolismo
SELECCIÓN DE REFERENCIAS
DETALLE DE LA BÚSQUEDA