Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 6 de 6
Filtrar
Más filtros

Bases de datos
Tipo del documento
Asunto de la revista
Intervalo de año de publicación
1.
J Biol Chem ; 298(5): 101856, 2022 05.
Artículo en Inglés | MEDLINE | ID: mdl-35337800

RESUMEN

Sulfation pattern and molecular weight (MW) play a key role in the biological actions of sulfated glycans. Besides anticoagulant effects, certain sulfated glycans can also exhibit anti-SARS-CoV-2 properties. To develop a more selective antiviral carbohydrate, an efficient strategy to separate these two actions is required. In this work, low MW fractions derived from the red alga Botryocladia occidentalis sulfated galactan (BoSG) were generated, structurally characterized, and tested for activity against SARS-CoV-2 and blood coagulation. The lowest MW fraction was found to be primarily composed of octasaccharides of monosulfated monosaccharides. Unlike heparin or native BoSG, we found that hydrolyzed BoSG products had weak anticoagulant activities as seen by aPTT and inhibitory assays using purified cofactors. In contrast, lower MW BoSG-derivatives retained anti-SARS-CoV-2 activity using SARS-CoV-2 spike (S)-protein pseudotyped lentivirus vector in HEK-293T-hACE2 cells monitored by GFP. Surface plasmon resonance confirmed that longer chains are necessary for BoSG to interact with coagulation cofactors but is not required for interactions with certain S-protein variants. We observed distinct affinities of BoSG derivatives for the S-proteins of different SARS-CoV-2 strains, including WT, N501Y (Alpha), K417T/E484K/N501Y (Gamma), and L542R (Delta) mutants, and stronger affinity for the N501Y-containing variants. Docking of the four possible monosulfated BoSG disaccharides in interactions with the N501Y mutant S-protein predicted potential binding poses of the BoSG constructs and favorable binding in close proximity to the 501Y residue. Our results demonstrate that depolymerization and fractionation of BoSG are an effective strategy to segregate its anticoagulant property from its anti-SARS-CoV-2 action.


Asunto(s)
Anticoagulantes , Antivirales , Galactanos , Rhodophyta , SARS-CoV-2 , Anticoagulantes/química , Anticoagulantes/farmacología , Antivirales/química , Antivirales/farmacología , COVID-19 , Galactanos/química , Galactanos/farmacología , Células HEK293 , Humanos , Rhodophyta/química , SARS-CoV-2/efectos de los fármacos , Glicoproteína de la Espiga del Coronavirus/química , Sulfatos/química
2.
Molecules ; 28(17)2023 Sep 03.
Artículo en Inglés | MEDLINE | ID: mdl-37687244

RESUMEN

The entry of SARS-CoV-2 into the host cell is mediated by its S-glycoprotein (SGP). Sulfated glycans bind to the SGP receptor-binding domain (RBD), which forms a ternary complex with its receptor angiotensin converting enzyme 2. Here, we have conducted a thorough and systematic computational study of the binding of four oligosaccharide building blocks from novel marine sulfated glycans (isolated from Pentacta pygmaea and Isostichopus badionotus) to the non-glycosylated and glycosylated RBD. Blind docking studies using three docking programs identified five potential cryptic binding sites. Extensive site-targeted docking and molecular dynamics simulations using two force fields confirmed only two binding sites (Sites 1 and 5) for these novel, highly charged sulfated glycans, which were also confirmed by previously published reports. This work showed the structural features and key interactions driving ligand binding. A previous study predicted Site 2 to be a potential binding site, which was not observed here. The use of several molecular modeling approaches gave a comprehensive assessment. The detailed comparative study utilizing multiple modeling approaches is the first of its kind for novel glycan-SGP interaction characterization. This study provided insights into the key structural features of these novel glycans as they are considered for development as potential therapeutics.


Asunto(s)
COVID-19 , Simulación de Dinámica Molecular , Humanos , Sulfatos , Glicoproteína de la Espiga del Coronavirus , SARS-CoV-2 , Sitios de Unión , Polisacáridos
3.
J Biol Chem ; 297(4): 101207, 2021 10.
Artículo en Inglés | MEDLINE | ID: mdl-34537241

RESUMEN

Certain sulfated glycans, including those from marine sources, can show potential effects against SARS-CoV-2. Here, a new fucosylated chondroitin sulfate (FucCS) from the sea cucumber Pentacta pygmaea (PpFucCS) (MW ∼10-60 kDa) was isolated and structurally characterized by NMR. PpFucCS is composed of {→3)-ß-GalNAcX-(1→4)-ß-GlcA-[(3→1)Y]-(1→}, where X = 4S (80%), 6S (10%) or nonsulfated (10%), Y = α-Fuc2,4S (40%), α-Fuc2,4S-(1→4)-α-Fuc (30%), or α-Fuc4S (30%), and S = SO3-. The anti-SARS-CoV-2 activity of PpFucCS and those of the FucCS and sulfated fucan isolated from Isostichopus badionotus (IbFucCS and IbSF) were compared with that of heparin. IC50 values demonstrated the activity of the three holothurian sulfated glycans to be ∼12 times more efficient than heparin, with no cytotoxic effects. The dissociation constant (KD) values obtained by surface plasmon resonance of the wildtype SARS-CoV-2 spike (S)-protein receptor-binding domain (RBD) and N501Y mutant RBD in interactions with the heparin-immobilized sensor chip were 94 and 1.8 × 103 nM, respectively. Competitive surface plasmon resonance inhibition analysis of PpFucCS, IbFucCS, and IbSF against heparin binding to wildtype S-protein showed IC50 values (in the nanomolar range) 6, 25, and 6 times more efficient than heparin, respectively. Data from computational simulations suggest an influence of the sulfation patterns of the Fuc units on hydrogen bonding with GlcA and that conformational change of some of the oligosaccharide structures occurs upon S-protein RBD binding. Compared with heparin, negligible anticoagulant action was observed for IbSF. Our results suggest that IbSF may represent a promising molecule for future investigations against SARS-CoV-2.


Asunto(s)
Polisacáridos/metabolismo , Glicoproteína de la Espiga del Coronavirus/metabolismo , Sulfatos/química , Animales , Sitios de Unión , COVID-19/patología , COVID-19/virología , Sulfatos de Condroitina/química , Sulfatos de Condroitina/metabolismo , Cinética , Simulación del Acoplamiento Molecular , Simulación de Dinámica Molecular , Mutagénesis Sitio-Dirigida , Tiempo de Tromboplastina Parcial , Polisacáridos/química , Unión Proteica , SARS-CoV-2/aislamiento & purificación , SARS-CoV-2/metabolismo , Pepinos de Mar/metabolismo , Glicoproteína de la Espiga del Coronavirus/química , Resonancia por Plasmón de Superficie
4.
Comput Biol Med ; 163: 107072, 2023 09.
Artículo en Inglés | MEDLINE | ID: mdl-37329611

RESUMEN

Nearly 50% of women are affected by urinary tract infections (UTIs) during their lifetimes. The most common agent to cause UTIs is Uropathogenic Escherichia coli (UPEC). UPEC expresses fibers known as chaperone-usher pathway pili with adhesins that specifically bind to receptors as they colonize various host tissues. UPEC uses an F9/Yde/Fml pilus, tipped with FmlH, which interacts with terminal galactoside/galactosaminoside units in glycoproteins in the epithelial cells of the bladder and kidney. The extensive use of traditional antibiotics has led to the rise of various antibiotic-resistant strains of UPEC. An alternative therapeutic approach is to use an anti-adhesion strategy mediated by competitive tight-binding FmlH inhibitors. In the current study, we have applied various computational modeling techniques, including fragment-based e-pharmacophore virtual screening, molecular docking, molecular dynamics simulations and binding free energy calculations for the design of small molecules that exhibit binding to FmlH. Our modeling protocol successfully predicted ligand moieties, such as a thiazole group, which were previously found as components of UPEC adhesin pili inhibitors, thereby validating our designed screening protocol. The screening protocol developed here could be utilized for design of ligands for other homologous protein targets. We also identified several novel galactosaminoside-containing molecules that, according to the computational modeling, are predicted to interact strongly with FmlH and hence we predict will be good FmlH inhibitors. Additionally, we have prepared and supplied a database of ∼190K small molecules obtained from virtual screening, which can serve as an excellent resource for the discovery of novel FmlH inhibitors.


Asunto(s)
Infecciones por Escherichia coli , Infecciones Urinarias , Escherichia coli Uropatógena , Femenino , Humanos , Simulación del Acoplamiento Molecular , Lectinas/metabolismo , Lectinas/uso terapéutico , Infecciones Urinarias/tratamiento farmacológico , Infecciones Urinarias/prevención & control , Vejiga Urinaria , Infecciones por Escherichia coli/tratamiento farmacológico , Infecciones por Escherichia coli/prevención & control , Ligandos , Escherichia coli Uropatógena/metabolismo , Antibacterianos/metabolismo
5.
Int J Biol Macromol ; 238: 124168, 2023 May 31.
Artículo en Inglés | MEDLINE | ID: mdl-36963552

RESUMEN

The structure of the sulfated galactan from the red alga Botryocladia occidentalis (BoSG) was originally proposed as a simple repeating disaccharide of alternating 4-linked α-galactopyranose (Galp) and 3-linked ß-Galp units with variable sulfation pattern. Abundance was estimated only for the α-Galp units: one-third of 2,3-disulfation and one-third of 2-monosulfation. Here, we isolated again the same BoSG fractions from the anion-exchange chromatography, obtaining the same NMR profile of the first report. More careful NMR analysis led us to revise the structure. A more complex sulfation pattern was noted along with the occurrence of 4-linked α-3,6-anhydro-Galp (AnGalp) units. Interestingly, the more sulfated BoSG fraction showed slightly reduced in vitro anti-SARS-CoV-2 activities against both wild-type and delta variants, and significantly reduced anticoagulant activity. The BoSG fractions showed no cytotoxic effects. The reduction in both bioactivities is attributed to the presence of the AnGalp unit. Docking scores from computational simulations using BoSG disaccharide constructs on wild-type and delta S-proteins, and binding analysis through competitive SPR assays using blood (co)-factors (antithrombin, heparin cofactor II and thrombin) and four S-proteins (wild-type, delta, gamma, and omicron) strongly support the conclusion about the deleterious impact of the AnGalp unit.


Asunto(s)
COVID-19 , Rhodophyta , Humanos , Galactanos/farmacología , Galactanos/química , Sulfatos/química , SARS-CoV-2 , Anticoagulantes/farmacología , Anticoagulantes/química , Rhodophyta/química , Disacáridos/farmacología
6.
J Gen Physiol ; 150(7): 949-968, 2018 07 02.
Artículo en Inglés | MEDLINE | ID: mdl-29915162

RESUMEN

Tight junctions are macromolecular structures that traverse the space between adjacent cells in epithelia and endothelia. Members of the claudin family are known to determine tight junction permeability in a charge- and size-selective manner. Here, we use molecular dynamics simulations to build and refine an atomic model of claudin-15 channels and study its transport properties. Our simulations indicate that claudin-15 forms well-defined channels for ions and molecules and otherwise "seals" the paracellular space through hydrophobic interactions. Ionic currents, calculated from simulation trajectories of wild-type as well as mutant channels, reflect in vitro measurements. The simulations suggest that the selectivity filter is formed by a cage of four aspartic acid residues (D55), contributed by four claudin-15 molecules, which creates a negative electrostatic potential to favor cation flux over anion flux. Charge reversal or charge ablation mutations of D55 significantly reduce cation permeability in silico and in vitro, whereas mutations of other negatively charged pore amino acid residues have a significantly smaller impact on channel permeability and selectivity. The simulations also indicate that water and small ions can pass through the channel, but larger cations, such as tetramethylammonium, do not traverse the pore. Thus, our model provides an atomic view of claudin channels, their transport function, and a potential three-dimensional organization of its selectivity filter.


Asunto(s)
Claudinas/química , Simulación de Dinámica Molecular , Animales , Sitios de Unión , Claudinas/metabolismo , Transporte Iónico , Ratones
SELECCIÓN DE REFERENCIAS
DETALLE DE LA BÚSQUEDA