Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 20 de 32
Filtrar
1.
Metab Brain Dis ; 38(8): 2615-2625, 2023 12.
Artículo en Inglés | MEDLINE | ID: mdl-37921949

RESUMEN

1-Methyl-4-phenyl-1,2,3,6-tetrahydropyridine (MPTP) has been widely used due to its specific and reproducible neurotoxic effect on the nigrostriatal system, being considered a convenient model of dopaminergic neurodegeneration to study interventions therapeutics. The purple pitanga (Eugenia uniflora) is a polyphenol-rich fruit with antioxidant and antidepressant properties, among others. Therefore, this study investigated the effect of purple pitanga extract (PPE) on acute early oxidative stress induced by intranasal 1-methyl-4-phenyl-1,2,3,6-tetrahydropyridine (MPTP) administration in rats. Male Wistar rats were pre-treated orally with PPE (1000 mg/kg) or vehicle. After 24 h, MPTP (0.1 mg/10µL/nostril) or vehicle was administered bilaterally into the animal's nostrils, and 6 h later, the olfactory bulb (OB), striatum (ST), and substantia nigra (SN) were collected to evaluate the oxidative stress parameters. Our findings revealed that OB and SN were the most affected areas after 6 h of MPTP infusion; an early increase in reactive oxygen species (ROS) levels was observed, while pretreatment with a single dose of PPE prevented this increment. No differences in thiobarbituric acid reactive species (TBARS) and 3-nitrotyrosine (3-NT) formation were observed, although 4-hydroxy-2-nonenal (4-HNE) levels increased, which is the most toxic form of lipid peroxidation, in the MPTP group. The PPE pretreatment could prevent this increase by increasing the NPSH levels previously decreased by MPTP. Furthermore, PPE prevents the Na+/K + ATPase strongly inhibited by MPTP, showing the neuroprotective capacity of the PPE by inhibiting the MPTP-generated oxidation. Thus, we demonstrated for the first time the antioxidant and neuroprotective effects of PPE against the early MPTP neurotoxicity.


Asunto(s)
Eugenia , Fármacos Neuroprotectores , Ratas , Masculino , Animales , Ratones , Antioxidantes/farmacología , Antioxidantes/metabolismo , 1-Metil-4-fenil-1,2,3,6-Tetrahidropiridina/farmacología , Eugenia/metabolismo , Ratas Wistar , Estrés Oxidativo , Fármacos Neuroprotectores/farmacología , Fármacos Neuroprotectores/uso terapéutico , Sustancia Negra/metabolismo , Extractos Vegetales/farmacología , Extractos Vegetales/uso terapéutico , Ratones Endogámicos C57BL , Modelos Animales de Enfermedad
2.
J Cell Biochem ; 118(5): 1144-1150, 2017 05.
Artículo en Inglés | MEDLINE | ID: mdl-27631303

RESUMEN

Organoselenium compounds and isoquinoline derivatives have their toxicity linked to induction of pro-oxidant situations. δ-Aminolevulinate dehydratase (δ-ALA-D) and Na+ , K+ -ATPase have sulfhydryl groups susceptible to oxidation. Thus, we investigated toxicological effects of 4-organoseleno-isoquinoline derivatives, cerebral monoamine oxidase B inhibitors, on rat cerebral δ-ALA-D and Na+ , K+ -ATPase activities and the involvement of sulfhydryl groups in vitro. Compounds substituted with fluoro (4-(4-fluorophenylseleno)-3-phenylisoquinoline), chloro (4-(4-chlorophenylseleno)-3-phenylisoquinoline) and trifluoro (4-(3-trifluoromethylphenylseleno)-3-phenylisoquinoline) at the selenium-bonded aromatic ring inhibited δ-ALA-D (IC50 values: 78.42, 92.27, 44.98 µM) and Na+ , K+ -ATPase (IC50 values: 41.36, 89.43, 50.66 µM) activities, possibly due to electronic effects induced by these groups. 3-Phenyl-4-(phenylseleno) isoquinoline (without substitution at the selenium-bonded aromatic ring) and 4-(4-methylphenylseleno)-3-phenylisoquinoline (with a methyl group substituted at the selenium-bonded aromatic ring) did not alter the activity of these enzymes. Dithiothreitol, a reducing agent, restored the enzymatic activities inhibited by 4-(4-fluorophenylseleno)-3-phenylisoquinoline, 4-(4-chlorophenylseleno)-3-phenylisoquinoline and 4-(3-trifluoromethylphenylseleno)-3-phenylisoquinoline, suggesting the involvement of sulfhydryl residues in this effect. However, the release of essential zinc seems not to be related to the δ-ALA-D inhibition by these compounds. According to these data, the effect of oral administration (300 mg/kg, intragastric) of 3-phenyl-4-(phenylseleno) isoquinoline on markers of systemic toxicity in Wistar rats was evaluated. None signs of toxicity was observed during or after treatment. This study suggests that the insertion of electron-withdrawing groups in the aromatic ring bonded to the selenium atom of isoquinolines tested increased its inhibitory effect on sulfhydryl enzymes in vitro. 3-Phenyl-4-(phenylseleno) isoquinoline, which has documented pharmacological properties, had no toxicological effects on the parameters evaluated in this study. J. Cell. Biochem. 118: 1144-1150, 2017. © 2016 Wiley Periodicals, Inc.


Asunto(s)
Isoquinolinas/toxicidad , Compuestos de Organoselenio/toxicidad , Porfobilinógeno Sintasa/metabolismo , ATPasa Intercambiadora de Sodio-Potasio/metabolismo , Compuestos de Sulfhidrilo/toxicidad , Animales , Encéfalo/efectos de los fármacos , Encéfalo/enzimología , Cloruros/farmacología , Ditiotreitol/farmacología , Inhibidores Enzimáticos/administración & dosificación , Inhibidores Enzimáticos/química , Inhibidores Enzimáticos/farmacología , Femenino , Isoquinolinas/química , Masculino , Compuestos de Organoselenio/química , Porfobilinógeno Sintasa/antagonistas & inhibidores , Ratas , Ratas Wistar , ATPasa Intercambiadora de Sodio-Potasio/antagonistas & inhibidores , Compuestos de Sulfhidrilo/química , Pruebas de Toxicidad , Compuestos de Zinc/farmacología
3.
Cell Mol Neurobiol ; 37(5): 911-917, 2017 Jul.
Artículo en Inglés | MEDLINE | ID: mdl-27650074

RESUMEN

Myeloperoxidase (MPO) is an inducible heme peroxidase responsive to some stress situations. It is already known that its activity is stimulated in neurodegenerative disorders and in the animal model of parkinson's disease (PD) induced by 1-methyl-4-phenyl-1,2,3,6-tetrahydropyridine (MPTP). By contrast, the role of δ-aminolevulinate dehydratase (δ-ALA-D), an essential enzyme for heme synthesis, has not been investigated in the MPTP model. The aim of this study was to investigate the involvement of striatal δ-ALA-D activity in an acute model of PD, induced by MPTP, in C57Bl/6 mice and its correlation with MPO activity. Animals received four MPTP injections (20 mg/kg, i.p.) or saline (vehicle) to induce a PD model. 7 days after MPTP administration, the motor function was evaluated through rotarod and challenging beam tests in mice. Afterward, mice were killed, and the striata were removed for biochemical analyses. MPTP-treated mice showed impairment in motor skills, such as balance and motor coordination. Furthermore, there was a reduction of tyrosine hydroxylase levels in these animals, which characterizes the dopaminergic lesion. Striatal δ-ALA-D activity was stimulated by MPTP, as well as the MPO activity, and a significant positive correlation between δ-ALA-D and MPO activities was also demonstrated. These data suggest that δ-ALA-D activity could be stimulated due to the requirement of heme groups by peroxidases. Therefore, this study demonstrated for the first time the involvement of striatal δ-ALA-D activity in the MPTP model and its correlation with the MPO activity.


Asunto(s)
Enfermedad de Parkinson/enzimología , Peroxidasa/metabolismo , Porfobilinógeno Sintasa/metabolismo , 1-Metil-4-fenil-1,2,3,6-Tetrahidropiridina , Animales , Modelos Animales de Enfermedad , Masculino , Ratones Endogámicos C57BL , Ratones Noqueados , Enfermedad de Parkinson/patología
4.
Brain Sci ; 14(6)2024 Jun 10.
Artículo en Inglés | MEDLINE | ID: mdl-38928592

RESUMEN

The endocannabinoid system has been linked to various physiological and pathological processes, because it plays a neuromodulator role in the central nervous system. In this sense, cannabinoids have been used off-label for neurodevelopmental disorders, such as autism spectrum disorder (ASD) and attention-deficit/hyperactivity disorder (ADHA), as well as in Alzheimer's disease (AD), a more prevalent neurodegenerative disease. Thus, this study aims, through a comprehensive literature review, to arrive at a better understanding of the impact of cannabinoids in the therapeutic treatment of patients with ASD, ADHD, and Alzheimer's disease (AD). Overall, cannabis products rich in CBD displayed a higher therapeutic potential for ASD children, while cannabis products rich in THC have been tested more for AD therapy. For ADHD, the clinical studies are incipient and inconclusive, but promising. In general, the main limitations of the clinical studies are the lack of standardization of the cannabis-based products consumed by the participants, a lack of scientific rigor, and the small number of participants.

5.
Brain Sci ; 14(1)2024 Jan 20.
Artículo en Inglés | MEDLINE | ID: mdl-38275520

RESUMEN

Parkinson's disease (PD) is a multifactorial disease, with genetic and environmental factors contributing to the disease onset. Classically, PD is a movement disorder characterized by the loss of dopaminergic neurons in the nigrostriatal pathway and intraneuronal aggregates mainly constituted of the protein α-synuclein. However, PD patients also display non-motor symptoms, including depression, which have been linked to functional abnormalities of non-dopaminergic neurons, including serotonergic and noradrenergic ones. Thus, through this comprehensive literature review, we shed light on the noradrenergic and serotonergic impairment linked to depression in PD, focusing on the putative involvement of inflammatory mechanisms.

6.
Basic Clin Pharmacol Toxicol ; 134(5): 574-601, 2024 May.
Artículo en Inglés | MEDLINE | ID: mdl-38477419

RESUMEN

Studies have demonstrated the neuroprotective effect of cannabidiol (CBD) and other Cannabis sativa L. derivatives on diseases of the central nervous system caused by their direct or indirect interaction with endocannabinoid system-related receptors and other molecular targets, such as the 5-HT1A receptor, which is a potential pharmacological target of CBD. Interestingly, CBD binding with the 5-HT1A receptor may be suitable for the treatment of epilepsies, parkinsonian syndromes and amyotrophic lateral sclerosis, in which the 5-HT1A serotonergic receptor plays a key role. The aim of this review was to provide an overview of cannabinoid effects on neurological disorders, such as epilepsy, multiple sclerosis and Parkinson's diseases, and discuss their possible mechanism of action, highlighting interactions with molecular targets and the potential neuroprotective effects of phytocannabinoids. CBD has been shown to have significant therapeutic effects on epilepsy and Parkinson's disease, while nabiximols contribute to a reduction in spasticity and are a frequent option for the treatment of multiple sclerosis. Although there are multiple theories on the therapeutic potential of cannabinoids for neurological disorders, substantially greater progress in the search for strong scientific evidence of their pharmacological effectiveness is needed.


Asunto(s)
Cannabidiol , Cannabinoides , Epilepsia , Trastornos Mentales , Esclerosis Múltiple , Enfermedad de Parkinson , Humanos , Cannabidiol/farmacología , Cannabidiol/uso terapéutico , Enfermedad de Parkinson/tratamiento farmacológico , Esclerosis Múltiple/tratamiento farmacológico , Receptor de Serotonina 5-HT1A/uso terapéutico , Cannabinoides/farmacología , Cannabinoides/uso terapéutico , Epilepsia/tratamiento farmacológico , Trastornos Mentales/tratamiento farmacológico , Comorbilidad
7.
ACS Chem Neurosci ; 15(15): 2695-2702, 2024 Aug 07.
Artículo en Inglés | MEDLINE | ID: mdl-38989663

RESUMEN

Status epilepticus (SE) is a medical emergency associated with high mortality and morbidity. Na+, K+-ATPase, is a promising therapeutic target for SE, given its critical role in regulation of neuron excitability and cellular homeostasis. We investigated the effects of a Na+, K+-ATPase-activating antibody (DRRSAb) on short-term electrophysiological and behavioral consequences of pilocarpine-induced SE. Rats were submitted to pilocarpine-induced SE, followed by intranasal administration (2 µg/nostril). The antibody increased EEG activity following SE, namely, EEG power in theta, beta, and gamma frequency bands, assessed by quantitative analysis of EEG power spectra. One week later, DRRSAb-treated animals displayed less behavioral hyperreactivity in pick-up tests and better performance in novel object recognition tests, indicating that the intranasal administration of this Na+, K+-ATPase activator immediately after SE improves behavioral outcomes at a later time point. These results suggest that Na+, K+-ATPase activation warrants further investigation as an adjunctive therapeutic strategy for SE.


Asunto(s)
Administración Intranasal , Electroencefalografía , Pilocarpina , ATPasa Intercambiadora de Sodio-Potasio , Estado Epiléptico , Animales , Estado Epiléptico/inducido químicamente , Estado Epiléptico/tratamiento farmacológico , ATPasa Intercambiadora de Sodio-Potasio/metabolismo , Masculino , Pilocarpina/farmacología , Electroencefalografía/métodos , Electroencefalografía/efectos de los fármacos , Ratas , Conducta Animal/efectos de los fármacos , Modelos Animales de Enfermedad , Ratas Wistar , Anticuerpos/farmacología , Anticuerpos/administración & dosificación
8.
Neurobiol Learn Mem ; 99: 17-24, 2013 Jan.
Artículo en Inglés | MEDLINE | ID: mdl-23085182

RESUMEN

This study investigated the effects of co-administration of diphenyl diselenide [(PhSe)(2)] and 17ß-estradiol (E(2)) on spatial reference, recognition, and working memories in ovariectomized (OVX) female mice. Sixty-day-old female adult Swiss mice were submitted to ovariectomy. From the 30th until 32nd day after ovariectomy, different doses of (PhSe)(2) (0.5-10mg/kg p.o.) were administrated to OVX mice 30min before each training of Morris Water Maze (MWM) test in order to find the highest subeffective dose for this drug. After that, OVX mice were divided into four groups: Oil, (PhSe)(2), E(2), and (PhSe)(2)+E(2). (PhSe)(2) (0.5mg/kg) and E(2) (0.1mg/kg) were administered to OVX mice from 30th to 32nd day after surgery, 30min before the training phases of behavioral tests (Open Field, MWM, Object Recognition, and T-maze). Our results demonstrated that 0.5mg/kg (PhSe)(2) plus 0.1mg/kg E(2) combined treatment improved spatial memory in the MWM test. By contrast, this same co-administration therapy was not effective in ameliorating neither delayed spontaneous alternation in the T-maze test nor object recognition memory deficits in OVX mice, although the dose of 0.5mg/kg (PhSe)(2) enhanced per se the object recognition memory in OVX mice. In conclusion, the current behavioral data suggest that a combination of (PhSe)(2) plus E(2) treatment seems to be a promising alternative to treat the cognitive decline related to menopause. Further studies should be conducted in order to determine an effective dose for (PhSe)(2) plus E(2) therapy on Object Recognition and T-maze tests.


Asunto(s)
Conducta Animal/efectos de los fármacos , Derivados del Benceno/farmacología , Cognición/efectos de los fármacos , Estradiol/farmacología , Estrógenos/farmacología , Compuestos de Organoselenio/farmacología , Ovariectomía , Animales , Trastornos del Conocimiento/fisiopatología , Modelos Animales de Enfermedad , Estradiol/fisiología , Estrógenos/fisiología , Femenino , Memoria a Corto Plazo/efectos de los fármacos , Ratones , Ovariectomía/psicología , Reconocimiento en Psicología/efectos de los fármacos , Percepción Espacial/efectos de los fármacos
9.
Brain Sci ; 13(2)2023 Feb 08.
Artículo en Inglés | MEDLINE | ID: mdl-36831832

RESUMEN

Epilepsy is characterized by a predisposition to generate recurrent and spontaneous seizures; it affects millions of people worldwide. Status epilepticus (SE) is a severe type of seizure. In this context, screening potential treatments is very important. In the present study, we evaluated the beneficial effects of rosmarinic acid (RA) in pilocarpine-induced in vitro and in vivo models of epileptiform activity. Using an in vitro model in combined entorhinal cortex-hippocampal from Wistar rats we evaluated the effects of RA (10 µg/mL) on the lactate release and a glucose fluorescent analogue, 2-(N-(7-nitrobenz-2-oxa-1,3-diazol-4-yl)amino)-2-deoxyglucose (2-NDBG), after incubation in high potassium aCSF supplemented or not with pilocarpine. In the in vivo model, SE was induced in male C57BL/6 mice by pilocarpine. At 1, 24, and 48 h after the end of SE mice were treated with RA (30 mg/kg/v.o.). We evaluated the neuromotor impairment by neuroscore tests and protein carbonyl levels in the cerebral cortex. In both in vitro models, RA was able to decrease the stimulated lactate release, while no effect on 2-NBDG uptake was found. RA has beneficial effects in models of epileptiform activity in vivo and in vitro. We found that RA treatment attenuated SE-induced neuromotor impairment at the 48 h timepoint. Moreover, post-SE treatment with RA decreased levels of protein carbonyls in the cerebral cortex of mice when compared to their vehicle-treated counterparts. Importantly, RA was effective in a model of SE which is relevant for the human condition. The present data add to the literature on the biological effects of RA, which could be a good candidate for add-on therapy in epilepsy.

10.
Life Sci ; 324: 121711, 2023 Jul 01.
Artículo en Inglés | MEDLINE | ID: mdl-37088413

RESUMEN

Parkinson's disease is a multisystemic neurodegenerative disorder that includes motor and non-motor symptoms, and common symptoms include memory loss and learning difficulties. Thus, we investigated the neuroprotective potential of a hydroalcoholic extract of Brazilian purple cherry (Eugenia uniflora) (HAE-BC) on memory impairments induced by intranasal 1-methyl-4-phenyl-1,2,3,6-tetrahydropyridine (MPTP) administration in rats and the involvement of hippocampal BDNF/TrkB/p75NTR pathway in its effects. Adult male Wistar rats were exposed to MPTP (1 mg/nostril) or vehicle. Twenty-four hours later, the HAE-BC treatments began at doses of 300 or 2000 mg/kg/day or vehicle for 14 days. From 7 days after the MPTP induction, the animals were subjected to behavioral tests to evaluate several cognitive paradigms. HAE-BC treatments, at both doses, blocked the MPTP-caused disruption in the social recognition memory, short- and long-term object recognition memories, and working memory. Furthermore, MPTP-induced motor deficit linked to striatal tyrosine hydroxylase levels decreased, which was blocked by HAE-BC. Our findings demonstrated that HAE-BC blocked the MPTP-induced increase in the hippocampal pro-BDNF, TrkB.t1, and p75NTR levels. The pro-BDNF/p75NTR interaction negatively regulates synaptic transmission and plasticity, and the neuroprotective effect of HAE-BC was related, at least partly, to the modulation of this hippocampal signaling pathway. Thus, our study reports the first evidence of the potential therapeutic of E. uniflora in a Parkinson's disease model in rodents.


Asunto(s)
Eugenia , Fármacos Neuroprotectores , Enfermedad de Parkinson , Ratas , Animales , Masculino , Ratones , Fármacos Neuroprotectores/farmacología , Fármacos Neuroprotectores/uso terapéutico , Factor Neurotrófico Derivado del Encéfalo/metabolismo , Enfermedad de Parkinson/tratamiento farmacológico , Ratas Wistar , Eugenia/metabolismo , Trastornos de la Memoria/tratamiento farmacológico , Trastornos de la Memoria/prevención & control , Trastornos de la Memoria/metabolismo , 1-Metil-4-fenil-1,2,3,6-Tetrahidropiridina , Modelos Animales de Enfermedad , Ratones Endogámicos C57BL
11.
Behav Brain Res ; 453: 114615, 2023 09 13.
Artículo en Inglés | MEDLINE | ID: mdl-37558167

RESUMEN

Aspartame (ASP) is a common sweetener, but studies show it can harm the nervous system, causing learning and memory deficits. ß-caryophyllene (BCP), a natural compound found in foods, including bread, coffee, alcoholic beverages, and spices, has already described as a neuroprotector agent. Remarkably, ASP and BCP are commonly consumed, including in the same meal. Therefore, considering that (a) the BCP displays plenty of beneficial effects; (b) the ASP toxicity; and (c) that they can be consumed in the same meal, this study sought to investigate if the BCP would mitigate the memory impairment induced by ASP in rats and investigate the involvement of the brain-derived neurotrophic factor (BDNF)/ tropomyosin receptor kinase B (TrKB) signaling pathway and acetylcholinesterase (AChE) activity. Young male Wistar rats received ASP (75 mg/kg; i.g.) and/or BCP (100 mg/kg; i.p.) once daily, for 14 days. At the end of the treatment, the animals were evaluated in the open field and object recognition tests. The cerebral cortex and hippocampus samples were collected for biochemical and molecular analyses. Results showed that the BCP effectively protected against the cognitive damage caused by ASP in short and long-term memories. In addition, BCP mitigated the increase in AChE activity caused by ASP. Molecular insights revealed augmented BDNF and TrKB levels in the hippocampus of rats treated with BCP, indicating greater activation of this pathway. In conclusion, BCP protected against ASP-induced memory impairment. AChE activity and the BDNF/TrkB signaling pathway seem to be potential targets of BCP modulatory role in this study.


Asunto(s)
Acetilcolinesterasa , Disfunción Cognitiva , Animales , Masculino , Ratas , Acetilcolinesterasa/metabolismo , Aspartame/metabolismo , Factor Neurotrófico Derivado del Encéfalo/metabolismo , Disfunción Cognitiva/metabolismo , Hipocampo/metabolismo , Trastornos de la Memoria/inducido químicamente , Trastornos de la Memoria/tratamiento farmacológico , Trastornos de la Memoria/prevención & control , Ratas Wistar , Receptor trkB/metabolismo , Transducción de Señal , Tropomiosina/metabolismo
12.
Psychopharmacology (Berl) ; 240(1): 157-169, 2023 Jan.
Artículo en Inglés | MEDLINE | ID: mdl-36520197

RESUMEN

RATIONALE: Major depressive disorder (MDD) is one of the most diagnosed mental disorders. Despite this, its pathophysiology remains poorly understood. In this context, basic research aims to unravel the pathophysiological mechanisms of MDD as well as investigate new targets and substances with therapeutic potential. Transient receptor potential ankyrin 1 (TRPA1) is a transmembrane channel considered a sensor for inflammation and oxidative stress. Importantly, both inflammation and oxidative stress have been suggested as participants in the pathophysiology of MDD. However, the potential participation of TRPA1 in depressive disorder remains poorly investigated. OBJECTIVE: To investigate the involvement of the TRPA1 channel in the behavioral changes induced by chronic corticosterone administration (CCA) in male mice. METHODS: Swiss male mice were exposed to 21 days of CCA protocol and then treated with HC-030031 or A-967079, TRPA1 antagonists. Behavioral tests, analyzes of oxidative parameters and TRPA1 immunocontent were performed in the prefrontal cortex (PFC) and hippocampus (HIP). RESULTS: CCA induced despair-like behavior in mice accompanied by an increase in the levels of hydrogen peroxide (H2O2), a TRPA1 agonist, which was reversed by TRPA1 antagonists and ketamine (positive control). In addition, CCA protocol reduced the immunocontent of this channel in the HIP and showed a tendency to increase the TRPA1 protein expression in the PFC. CONCLUSION: Our work suggests that TRPA1 channel appears crucial to mediate the behavioral impairment induced by CCA in male Swiss mice.


Asunto(s)
Corticosterona , Trastorno Depresivo Mayor , Masculino , Animales , Ratones , Canal Catiónico TRPA1/metabolismo , Peróxido de Hidrógeno/metabolismo , Inflamación
13.
Sci Rep ; 13(1): 4418, 2023 03 17.
Artículo en Inglés | MEDLINE | ID: mdl-36932156

RESUMEN

Pain caused by the tumor or aromatase inhibitors (AIs) is a disabling symptom in breast cancer survivors. Their mechanisms are unclear, but pro-algesic and inflammatory mediators seem to be involved. Kinins are endogenous algogenic mediators associated with various painful conditions via B1 and B2 receptor activation, including chemotherapy-induced pain and breast cancer proliferation. We investigate the involvement of the kinin B1 and B2 receptors in metastatic breast tumor (4T1 breast cancer cells)-caused pain and in aromatase inhibitors (anastrozole or letrozole) therapy-associated pain. A protocol associating the tumor and antineoplastic therapy was also performed. Kinin receptors' role was investigated via pharmacological antagonism, receptors protein expression, and kinin levels. Mechanical and cold allodynia and muscle strength were evaluated. AIs and breast tumor increased kinin receptors expression, and tumor also increased kinin levels. AIs caused mechanical allodynia and reduced the muscle strength of mice. Kinin B1 (DALBk) and B2 (Icatibant) receptor antagonists attenuated these effects and reduced breast tumor-induced mechanical and cold allodynia. AIs or paclitaxel enhanced breast tumor-induced mechanical hypersensitivity, while DALBk and Icatibant prevented this increase. Antagonists did not interfere with paclitaxel's cytotoxic action in vitro. Thus, kinin B1 or B2 receptors can be a potential target for treating the pain caused by metastatic breast tumor and their antineoplastic therapy.


Asunto(s)
Antineoplásicos , Dolor en Cáncer , Neoplasias , Ratones , Animales , Inhibidores de la Aromatasa/farmacología , Inhibidores de la Aromatasa/uso terapéutico , Hiperalgesia/tratamiento farmacológico , Hiperalgesia/metabolismo , Receptor de Bradiquinina B2/metabolismo , Receptor de Bradiquinina B1/metabolismo , Bradiquinina/farmacología , Dolor , Paclitaxel
14.
Neurotox Res ; 40(6): 1924-1936, 2022 Dec.
Artículo en Inglés | MEDLINE | ID: mdl-36441450

RESUMEN

Neonatal exposure to general anesthetics has been associated with neurotoxicity and morphologic changes in the developing brain. Isoflurane is a volatile anesthetic widely used in pediatric patients to induce general anesthesia, analgesia, and perioperative sedation. In the present study, we investigated the effects of a single neonatal isoflurane (3% in oxygen, 2 h) exposure in rats at postnatal day (PND) 7, in short-term (24 h - PND8) and long-term (adulthood) protocols. In PND8, ex vivo analysis of hippocampal and frontal cortex slices evaluated cell viability and susceptibility to in vitro glutamate challenge. In adult rats, behavioral parameters related to anxiety-like behavior, short-term memory, and locomotor activity (PND60-62) and ex vivo analysis of cell viability, membrane permeability, glutamate uptake, and susceptibility to in vitro glutamate challenge in hippocampal and cortical slices from PND65. A single isoflurane (3%, 2 h) exposure at PND7 did not acutely alter cell viability in cortical and hippocampal slices of infant rats (PND8) per se and did not alter slice susceptibility to in vitro glutamate challenge. In rat's adulthood, behavioral analysis revealed that the neonatal isoflurane exposure did not alter anxiety-like behavior and locomotor activity (open field and rotarod tests). However, isoflurane exposure impaired short-term memory evaluated in the novel object recognition task. Ex vivo analysis of brain slices showed isoflurane neonatal exposure selectively decreased cell viability and glutamate uptake in cortical slices, but it did not alter hippocampal slice viability or glutamate uptake (PND65). Isoflurane exposure did not alter in vitro glutamate-induced neurotoxicity to slices, and isoflurane exposure caused no significant long-term damage to cell membranes in hippocampal or cortical slices. These findings indicate that a single neonatal isoflurane exposure did not promote acute damage; however, it reduced cortical, but not hippocampal, slice viability and glutamate uptake in the adulthood. Additionally, behavioral analysis showed neonatal isoflurane exposure induces short-term recognition memory impairment, consolidating that neonatal exposure to volatile anesthetics may lead to behavioral impairment in the adulthood, although it may damage brain regions differentially.


Asunto(s)
Anestésicos por Inhalación , Anestésicos , Isoflurano , Ratas , Animales , Isoflurano/toxicidad , Ácido Glutámico/metabolismo , Memoria a Corto Plazo , Supervivencia Celular , Hipocampo , Lóbulo Frontal/metabolismo , Corteza Cerebral/metabolismo , Anestésicos por Inhalación/toxicidad
15.
Epilepsy Res ; 179: 106842, 2021 Dec 08.
Artículo en Inglés | MEDLINE | ID: mdl-34942451

RESUMEN

Epilepsy is a common chronic neurological disease. The hallmark of epilepsy is recurrent, unprovoked seizures. Unfortunately, drug resistance is frequent in patients with epilepsy, and therefore improved therapeutic strategies are needed. In the present study, we tested the effect of pregabalin in association with beta-caryophyllene, an FDA-approved food additive and naturally occurring agonist of cannabinoid receptor subtype 2 against pentylenetetrazol (PTZ)-induced seizures in rats. In addition, selected neurochemical parameters were evaluated in the cerebral cortex. Adult male Wistar rats received beta-caryophyllene (100 mg/kg), pregabalin (40 mg/kg) or their combination before PTZ (60 mg/kg). Appropriated vehicle-treated control groups were included for each treatment. Animals were monitored by video-EEG and the latency to myoclonic seizures, latency to tonic-clonic seizures, tonic-clonic seizure duration and overall seizure score were measured. Glial fibrillary acidic protein (GFAP) release, erythroid-related factor 2 (Nrf2), c-fos and 3-nitrotyrosine (3-NT) levels were evaluated in the frontal cortex. We found that beta-caryophyllene plus pregabalin increased the latency to PTZ-induced myoclonic and tonic-clonic seizures and decreased the tonic-clonic seizure duration and overall seizure score. Interestingly, lower levels of GFAP, c-Fos and 3-NT were observed in animals receiving beta-caryophyllene and pregabalin treatments. Our results suggest a possible synergic effect of beta-caryophyllene plus pregabalin against PTZ induced-seizures.

16.
Chem Biol Interact ; 348: 109635, 2021 Oct 01.
Artículo en Inglés | MEDLINE | ID: mdl-34506763

RESUMEN

Aflatoxin B1 (AFB1) is a mycotoxin highly toxic and carcinogenic to humans due to its potential to induce oxidative stress. The Beta-caryophyllene (BCP) have been highlighted for its broad spectrum of pharmacological effects. The present study aimed to investigate the beneficial effects of BCP against the susceptibility of hepatic and renal tissues to AFB1 toxicity, in biochemical parameters to assess organ function, tissue oxidation, and the immunocontent of oxidative and inflammatory proteins. Male Wistar rats was exposed to AFB1 (250 µg/kg, i.g.) and/or BCP (100 mg/kg, i.p.) for 14 successive days. It was found that exposure to AFB1 did not change the measured renal toxicity parameters. Also, AFB1 increased liver injury biomarkers (gamma glutamyl transferase and alkaline phosphatase) and reduced levels of non-enzymatic antioxidant defenses (ascorbic acid and non-protein thiol), however did not cause changes in the lipid peroxidation levels. Moreover, AFB1 interfered in oxidative pathway regulated by Kelch-like ECH-associated protein (Keap1)/nuclear factor (erythroid-derived 2)-like 2 (Nrf2), overacting Glutathione-S-Transferase (GST) activity. Lastly, a main effect of AFB1 on the total interleukin 1 beta (IL-1ß) was observed. Remarkably, the associated treatment of AFB1 + BCP improved altered liver parameters. In addition, BCP and AFB1 + BCP groups showed an increase in the levels of inhibitor of nuclear factor kappa-B kinase subunit beta (IKKß). Thus, these results indicated that BCP has potential protective effect against AFB1 induced hepatotoxicity.


Asunto(s)
Aflatoxina B1/toxicidad , Citoprotección/efectos de los fármacos , Hígado/efectos de los fármacos , Sesquiterpenos/farmacología , Animales , Antioxidantes/metabolismo , Glutatión/metabolismo , Proteína 1 Asociada A ECH Tipo Kelch/metabolismo , Peroxidación de Lípido/efectos de los fármacos , Hígado/citología , Hígado/metabolismo , Masculino , Factor 2 Relacionado con NF-E2/metabolismo , Estrés Oxidativo/efectos de los fármacos , Ratas , Ratas Wistar
17.
Brain Res Bull ; 175: 1-15, 2021 10.
Artículo en Inglés | MEDLINE | ID: mdl-34280479

RESUMEN

Progressive multiple sclerosis (PMS) is a neurological disease associated with the development of depression and anxiety, but treatments available are unsatisfactory. The transient receptor potential ankyrin 1 (TRPA1) is a cationic channel activated by reactive compounds, and the blockage of this receptor can reduce depression- and anxiety-like behaviors in naive mice. Thus, we investigated the role of TRPA1 in depression- and anxiety-like behaviors in a PMS model in mice. PMS model was induced in C57BL/6 female mice by the experimental autoimmune encephalomyelitis (EAE). Nine days after the PMS-EAE induction, behavioral tests (tail suspension and elevated plus maze tests) were performed to verify the effects of sertraline (positive control), selective TRPA1 antagonist (A-967,079), and antioxidants (α-lipoic acid and apocynin). The prefrontal cortex and hippocampus were collected to evaluate biochemical and inflammatory markers. PMS-EAE induction did not cause locomotor changes but triggered depression- and anxiety-like behaviors, which were reversed by sertraline, A-967,079, α-lipoic acid, or apocynin treatments. The neuroinflammatory markers (AIF1, GFAP, IL-1ß, IL-17, and TNF-α) were increased in mice's hippocampus. Moreover, this model did not alter TRPA1 RNA expression levels in the hippocampus but decrease TRPA1 levels in the prefrontal cortex. Moreover, PMS-EAE induced an increase in NADPH oxidase and superoxide dismutase activities and TRPA1 endogenous agonist levels (hydrogen peroxide and 4-hydroxynonenal). TRPA1 plays a fundamental role in depression- and anxiety-like behaviors in a PMS-EAE model; thus, it could be a possible pharmacological target for treating these symptoms in PMS.


Asunto(s)
Ansiedad/genética , Ansiedad/psicología , Conducta Animal , Depresión/genética , Depresión/psicología , Encefalomielitis Autoinmune Experimental/genética , Encefalomielitis Autoinmune Experimental/psicología , Esclerosis Múltiple Crónica Progresiva/genética , Esclerosis Múltiple Crónica Progresiva/psicología , Canal Catiónico TRPA1/genética , Animales , Antioxidantes/farmacología , Femenino , Suspensión Trasera , Hipocampo/efectos de los fármacos , Hipocampo/metabolismo , Mediadores de Inflamación/metabolismo , Ratones , Ratones Endogámicos C57BL , Oximas/farmacología , Corteza Prefrontal/efectos de los fármacos , Corteza Prefrontal/metabolismo , Inhibidores Selectivos de la Recaptación de Serotonina/farmacología , Sertralina/farmacología , Canal Catiónico TRPA1/antagonistas & inhibidores
18.
Behav Brain Res ; 386: 112602, 2020 05 27.
Artículo en Inglés | MEDLINE | ID: mdl-32184159

RESUMEN

Depression is a serious disorder characterized by imbalance of mood and emotions, which is accompanied by the reduction in the monoaminergic signaling. The monoamine oxidase inhibition could lead to an increase in monoaminergic neurotransmitter levels in the brain. According to our previous study, 3-phenyl-4-(phenylseleno) isoquinoline (PSI) is a selective and reversible MAO-B inhibitor in vitro. The present study investigated the putative ex vivo inhibitory effect of a single PSI dose on the cerebral MAO activity and its antidepressant-like action in the mouse forced swimming test (FST). Additionally, the dopaminergic system contribution to the antidepressant-like effect of PSI was also evaluated. For this, PSI was dissolved in canola oil to determine time-course (0.5-24 h) and dose-response (25-100 mg/kg, 10 ml/kg, intragastrically) curves of MAO activity inhibition using adult C57Bl/6 male mice. A single PSI dose of 100 mg/kg inhibited the MAO-B activity in the whole brain 8 h after administration to mice, while it did not alter the MAO-A activity. The FST was carried out 0.5, 8, and 24 h after the PSI administration (100 mg/kg) or vehicle, but its antidepressant-like effect was demonstrated only at 0.5 and 8 h after treatment. Lastly, the contribution of dopaminergic system in the PSI antidepressant-like effect was demonstrated by using dopamine receptors antagonists, SCH23390, haloperidol and sulpiride. Thus, a single PSI dose of 100 mg/kg had an antidepressant-like effect in mice subjected to the FST 0.5 and 8 h after its administration. Moreover, the inhibition of cerebral MAO-B activity and modulation of dopamine receptors contributed to the antidepressant-like effect of PSI in mice.


Asunto(s)
Antidepresivos/farmacología , Depresión/tratamiento farmacológico , Isoquinolinas/farmacología , Compuestos de Organoselenio/farmacología , Animales , Antidepresivos/química , Depresión/metabolismo , Modelos Animales de Enfermedad , Dopamina/metabolismo , Isoquinolinas/química , Masculino , Ratones , Ratones Endogámicos C57BL , Monoaminooxidasa/metabolismo , Inhibidores de la Monoaminooxidasa/farmacología , Compuestos de Organoselenio/química , Receptores Dopaminérgicos
19.
Oxid Med Cell Longev ; 2020: 8324565, 2020.
Artículo en Inglés | MEDLINE | ID: mdl-32733637

RESUMEN

Degeneration of the locus coeruleus (LC), the main source of cerebral noradrenaline (NA), has been reported in diverse neurodegenerative diseases, including Parkinson's diseases (PD). There is increasing evidence indicating the role of NA deficiency in the prefrontal cortex (PFC) and the development of early cognitive impairments in PD. Here, we evaluated whether a selective noradrenergic lesion of LC caused by 6-hydroxydopamine (6-OHDA) may induce memory deficits and neurochemical alterations in the PFC. Adult male Wistar rats received stereotaxic bilateral injections of 6-OHDA (5 µg/2 µl) into the LC, and two stainless-steel guide cannulas were implanted in the PFC. The SHAM group received just vehicle. To induce a selective noradrenergic lesion, animals received nomifensine (10 mg/kg), a dopamine transporter blocker, one hour before surgery. 6-OHDA-lesioned rats displayed impairments of the short- and long-term object recognition memory associated to reduced content of tyrosine hydroxylase in the LC. Neurochemical analysis revealed an altered mitochondrial membrane potential in LC. Regarding the PFC, an increased ROS production, cell membrane damage, and mitochondrial membrane potential disruption were observed. Remarkably, bilateral NA (1 µg/0.2 µl) infusion into the PFC restored the recognition memory deficits in LC-lesioned rats. These findings indicate that a selective noradrenergic LC lesion induced by 6-OHDA deregulates a noradrenergic network in the PFC, which could be involved in the early memory impairments observed in nondemented PD patients.


Asunto(s)
Locus Coeruleus/patología , Trastornos de la Memoria/patología , Oxidopamina/efectos adversos , Corteza Prefrontal/fisiopatología , Animales , Modelos Animales de Enfermedad , Masculino , Ratas , Ratas Wistar
20.
Behav Brain Res ; 372: 112014, 2019 10 17.
Artículo en Inglés | MEDLINE | ID: mdl-31212060

RESUMEN

The dorsolateral striatum (DLS) processes motor and non-motor functions and undergoes extensive dopaminergic degeneration in Parkinson's disease (PD). Beyond the nigrostriatal pathway, dopaminergic degeneration also affects other brain areas including the pre-frontal cortex (PFC) and hippocampus, which have been associated with the appearance of anhedonia and depression at pre-motor phases of PD. Herein, using behavioral and biochemical approaches, we investigated the protective effects of guanosine (GUO) (7.5 mg/kg, i.p.) against emotional impairments and cellular events in cortical, striatal and hippocampal slices of rats submitted to a bilateral infusion of 6-OHDA (10 µg/hemisphere) into the DLS. 6-OHDA-lesioned rats displayed anhedonic- and depressive-like behaviors addressed in the splash and forced swimming tests (at 8 and 21 days after lesion, respectively). In addition, no alterations in motor performance in the open field test and social interaction were observed. Biochemical analyses were performed 22 days after 6-OHDA lesions. 6-OHDA lesion induced hippocampal mitochondrial membrane potential disruption. However, intra-striatal 6-OHDA administration did not alter the ROS levels measured in cortical, striatal and hippocampal slices. GUO treatment attenuated anhedonic- and depressive-like behaviors in 6-OHDA-lesioned rats and protected hippocampal slices against the mitochondrial membrane potential disruption. These results indicate antidepressant-like effects of GUO in a rat model of PD, indicating the potential of GUO for the treatment of depression associated with PD.


Asunto(s)
Depresión/metabolismo , Depresión/prevención & control , Guanosina/farmacología , Anhedonia/fisiología , Animales , Encéfalo/metabolismo , Cuerpo Estriado/metabolismo , Depresión/tratamiento farmacológico , Modelos Animales de Enfermedad , Dopamina/metabolismo , Guanosina/metabolismo , Hipocampo/metabolismo , Masculino , Actividad Motora/efectos de los fármacos , Neostriado/metabolismo , Oxidopamina/farmacología , Enfermedad de Parkinson/patología , Ratas , Ratas Wistar
SELECCIÓN DE REFERENCIAS
DETALLE DE LA BÚSQUEDA