RESUMEN
Surface defect identification based on computer vision algorithms often leads to inadequate generalization ability due to large intraclass variation. Diversity in lighting conditions, noise components, defect size, shape, and position make the problem challenging. To solve the problem, this paper develops a pixel-level image augmentation method that is based on image-to-image translation with generative adversarial neural networks (GANs) conditioned on fine-grained labels. The GAN model proposed in this work, referred to as Magna-Defect-GAN, is capable of taking control of the image generation process and producing image samples that are highly realistic in terms of variations. Firstly, the surface defect dataset based on the magnetic particle inspection (MPI) method is acquired in a controlled environment. Then, the Magna-Defect-GAN model is trained, and new synthetic image samples with large intraclass variations are generated. These synthetic image samples artificially inflate the training dataset size in terms of intraclass diversity. Finally, the enlarged dataset is used to train a defect identification model. Experimental results demonstrate that the Magna-Defect-GAN model can generate realistic and high-resolution surface defect images up to the resolution of 512 × 512 in a controlled manner. We also show that this augmentation method can boost accuracy and be easily adapted to any other surface defect identification models.
RESUMEN
Any computer vision application development starts off by acquiring images and data, then preprocessing and pattern recognition steps to perform a task. When the acquired images are highly imbalanced and not adequate, the desired task may not be achievable. Unfortunately, the occurrence of imbalance problems in acquired image datasets in certain complex real-world problems such as anomaly detection, emotion recognition, medical image analysis, fraud detection, metallic surface defect detection, disaster prediction, etc., are inevitable. The performance of computer vision algorithms can significantly deteriorate when the training dataset is imbalanced. In recent years, Generative Adversarial Neural Networks (GANs) have gained immense attention by researchers across a variety of application domains due to their capability to model complex real-world image data. It is particularly important that GANs can not only be used to generate synthetic images, but also its fascinating adversarial learning idea showed good potential in restoring balance in imbalanced datasets. In this paper, we examine the most recent developments of GANs based techniques for addressing imbalance problems in image data. The real-world challenges and implementations of synthetic image generation based on GANs are extensively covered in this survey. Our survey first introduces various imbalance problems in computer vision tasks and its existing solutions, and then examines key concepts such as deep generative image models and GANs. After that, we propose a taxonomy to summarize GANs based techniques for addressing imbalance problems in computer vision tasks into three major categories: 1. Image level imbalances in classification, 2. object level imbalances in object detection and 3. pixel level imbalances in segmentation tasks. We elaborate the imbalance problems of each group, and provide GANs based solutions in each group. Readers will understand how GANs based techniques can handle the problem of imbalances and boost performance of the computer vision algorithms.