Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 20 de 122
Filtrar
Más filtros

Bases de datos
País/Región como asunto
Tipo del documento
Intervalo de año de publicación
1.
Stud Mycol ; 107: 1-66, 2024 Mar.
Artículo en Inglés | MEDLINE | ID: mdl-38600958

RESUMEN

The order Eurotiales is diverse and includes species that impact our daily lives in many ways. In the past, its taxonomy was difficult due to morphological similarities, which made accurate identification of species difficult. This situation improved and stabilised with recent taxonomic and nomenclatural revisions that modernised Aspergillus, Penicillium and Talaromyces. This was mainly due to the availability of curated accepted species lists and the publication of comprehensive DNA sequence reference datasets. This has also led to a sharp increase in the number of new species described each year with the accepted species lists in turn also needing regular updates. The focus of this study was to review the 160 species described between the last list of accepted species published in 2020 until 31 December 2022. To review these species, single-gene phylogenies were constructed and GCPSR (Genealogical Concordance Phylogenetic Species Recognition) was applied. Multi-gene phylogenetic analyses were performed to further determine the relationships of the newly introduced species. As a result, we accepted 133 species (37 Aspergillus, two Paecilomyces, 59 Penicillium, two Rasamsonia, 32 Talaromyces and one Xerochrysium), synonymised 22, classified four as doubtful and created a new combination for Paraxerochrysium coryli, which is classified in Xerochrysium. This brings the number of accepted species to 453 for Aspergillus, 12 for Paecilomyces, 535 for Penicillium, 14 for Rasamsonia, 203 for Talaromyces and four for Xerochrysium. We accept the newly introduced section Tenues (in Talaromyces), and series Hainanici (in Aspergillus sect. Cavernicolarum) and Vascosobrinhoana (in Penicillium sect. Citrina). In addition, we validate the invalidly described species Aspergillus annui and A. saccharicola, and series Annuorum (in Aspergillus sect. Flavi), introduce a new combination for Dichlaena lentisci (type of the genus) and place it in a new section in Aspergillus subgenus Circumdati, provide an updated description for Rasamsonia oblata, and list excluded and recently synonymised species that were previously accepted. This study represents an important update of the accepted species lists in Eurotiales. Taxonomic novelties: New sections: Aspergillus section Dichlaena Visagie, Kocsubé & Houbraken. New series: Aspergillus series Annuorum J.J. Silva, B.T. Iamanaka, Frisvad. New species: Aspergillus annui J.J. Silva, M.H.P. Fungaro, Frisvad, M.H. Taniwaki & B.T. Iamanaka; Aspergillus saccharicola J.J. Silva, Frisvad, M.H.P. Fungaro, M.H. Taniwaki & B.T. Iamanaka. New combinations: Aspergillus lentisci (Durieu & Mont.) Visagie, Malloch, L. Kriegsteiner, Samson & Houbraken; Xerochrysium coryli (Crous & Decock) Visagie & Houbraken. Citation: Visagie CM, Yilmaz N, Kocsubé S, Frisvad JC, Hubka V, Samson RA, Houbraken J (2024). A review of recently introduced Aspergillus, Penicillium, Talaromyces and other Eurotiales species. Studies in Mycology 107: 1-66. doi: 10.3114/sim.2024.107.01.

2.
Stud Mycol ; 101: 245-286, 2022 Jul.
Artículo en Inglés | MEDLINE | ID: mdl-36059899

RESUMEN

Over 80 species of hypocrealean fungi are reported as pathogens of spiders and harvestmen. Among these fungi, the genus Gibellula is highly regarded as a specialised spider-killer that has never been reported to infect other arthropods. While more than 20 species of Gibellula are known, few attempts to identify the infected spiders have been made despite the fact that the host specificity can help identify the fungal species. Here, we morphologically describe and illustrate eight new species of Gibellula and three new records from Thailand of known species along with the multi-gene phylogeny that clearly showed the segregation among the proposed species. Examination of the Gibellula-infected spider hosts identified Oxyopidae, Uloboridae and, for the first time, the ant-mimicking genus Myrmarachne. Taxonomic novelties: New species: Gibellula brevistipitata Kuephadungphan, Tasanathai & Luangsa-ard, G. longicaudata Tasanathai, Kuephadungphan & Luangsa-ard, G. longispora Kuephadungphan & Luangsa-ard, G. nigelii Kuephadungphan, Tasanathai & Luangsa-ard, G. parvula Kuephadungphan, Tasanathai & Luangsa-ard, G. pilosa Kuephadungphan, Tasanathai & Luangsa-ard, G. solita Kuephadungphan, Tasanathai & Luangsa-ard, G. trimorpha Tasanathai, Khonsanit, Kuephadungphan & Luangsa-ard. Citation: Kuephadungphan W, Petcharad B, Tasanathai K, Thanakitpipattana D, Kobmoo N, Khonsanit A, Samson RA, Luangsa-ard JJ (2022). Multi-locus phylogeny unmasks hidden species within the specialised spider-parasitic fungus, Gibellula (Hypocreales, Cordycipitaceae) in Thailand. Studies in Mycology 101: 245-286. doi: 10.3114/sim.2022.101.04.

3.
Stud Mycol ; 102: 53-93, 2022 Dec.
Artículo en Inglés | MEDLINE | ID: mdl-36760461

RESUMEN

Aspergillus series Versicolores members occur in a wide range of environments and substrates such as indoor environments, food, clinical materials, soil, caves, marine or hypersaline ecosystems. The taxonomy of the series has undergone numerous re-arrangements including a drastic reduction in the number of species and subsequent recovery to 17 species in the last decade. The identification to species level is however problematic or impossible in some isolates even using DNA sequencing or MALDI-TOF mass spectrometry indicating a problem in the definition of species boundaries. To revise the species limits, we assembled a large dataset of 518 strains. From these, a total of 213 strains were selected for the final analysis according to their calmodulin (CaM) genotype, substrate and geography. This set was used for phylogenetic analysis based on five loci (benA, CaM, RPB2, Mcm7, Tsr1). Apart from the classical phylogenetic methods, we used multispecies coalescence (MSC) model-based methods, including one multilocus method (STACEY) and five single-locus methods (GMYC, bGMYC, PTP, bPTP, ABGD). Almost all species delimitation methods suggested a broad species concept with only four species consistently supported. We also demonstrated that the currently applied concept of species is not sustainable as there are incongruences between single-gene phylogenies resulting in different species identifications when using different gene regions. Morphological and physiological data showed overall lack of good, taxonomically informative characters, which could be used for identification of such a large number of existing species. The characters expressed either low variability across species or significant intraspecific variability exceeding interspecific variability. Based on the above-mentioned results, we reduce series Versicolores to four species, namely A. versicolor, A. creber, A. sydowii and A. subversicolor, and the remaining species are synonymized with either A. versicolor or A. creber. The revised descriptions of the four accepted species are provided. They can all be identified by any of the five genes used in this study. Despite the large reduction in species number, identification based on phenotypic characters remains challenging, because the variation in phenotypic characters is high and overlapping among species, especially between A. versicolor and A. creber. Similar to the 17 narrowly defined species, the four broadly defined species do not have a specific ecology and are distributed worldwide. We expect that the application of comparable methodology with extensive sampling could lead to a similar reduction in the number of cryptic species in other extensively studied Aspergillus species complexes and other fungal genera. Citation: Sklenár F, Glässnerová K, Jurjevic Z, Houbraken J, Samson RA, Visagie CM, Yilmaz N, Gené J, Cano J, Chen AJ, Nováková A, Yaguchi T, Kolarík M, Hubka V (2022). Taxonomy of Aspergillus series Versicolores: species reduction and lessons learned about intraspecific variability. Studies in Mycology 102 : 53-93. doi: 10.3114/sim.2022.102.02.

4.
Persoonia ; 46: 163-187, 2021 Jun.
Artículo en Inglés | MEDLINE | ID: mdl-35935896

RESUMEN

A survey of Penicillium in the fynbos biome from South Africa resulted in the isolation of 61 species of which 29 were found to be new. In this study we focus on Penicillium section Canescentia, providing a phylogenetic re-evaluation based on the analysis of partial beta-tubulin (BenA), calmodulin (CaM) and RNA polymerase II second largest subunit (RPB2) sequence data. Based on phylogenies we show that five fynbos species are new and several previously assigned synonyms of P. canescens and P. janczewskii should be considered as distinct species. As such, we provide descriptions for the five new species and introduce the new name P. elizabethiae for the illegitimate P. echinatum. We also update the accepted species list and synonymies of section Canescentia species and provide a review of extrolites produced by these species. Citation: Visagie CM, Frisvad JC, Houbraken J, et al. 2021. A re-evaluation of Penicillium section Canescentia, including the description of five new species. Persoonia 46: 163-187. https://doi.org/10.3767/persoonia.2021.46.06.

5.
Stud Mycol ; 95: 171-251, 2020 Mar.
Artículo en Inglés | MEDLINE | ID: mdl-32855740

RESUMEN

Over the last two decades the molecular phylogeny and classification of Metarhizium has been widely studied. Despite these efforts to understand this enigmatic genus, the basal lineages in Metarhizium are still poorly resolved. In this study, a phylogenetic framework is reconstructed for the Clavicipitaceae focusing on Metarhizium through increased taxon-sampling using five genomic loci (SSU, LSU, tef, rpb1, rpb2) and the barcode marker ITS rDNA. Multi-gene phylogenetic analyses and morphological characterisation of green-spored entomopathogenic Metarhizium isolates from Thailand and soil isolates of M. carneum and M. marquandii reveal their ecological, genetic and species diversity. Nineteen new species are recognised in the Metarhizium clade with narrow host ranges: two new species are found in the M. anisopliae complex - M. clavatum on Coleoptera larvae and M. sulphureum on Lepidoptera larvae; four new species are found in the M. flavoviride complex - M. biotecense and M. fusoideum on brown plant hoppers (Hemiptera), M. culicidarum on mosquitoes, M. nornnoi on Lepidoptera larvae; three new species M. megapomponiae, M. cicadae, M. niveum occur on cicadas; five new species M. candelabrum, M. cercopidarum, M. ellipsoideum, M. huainamdangense M. ovoidosporum occur on planthoppers, leafhoppers and froghoppers (Hemiptera); one new species M. eburneum on Lepidoptera pupae; and four new species M. phuwiangense, M. purpureum, M. purpureonigrum, M. flavum on Coleoptera . Of these 19 new species, seven produce a sexual morph (M. clavatum, M. eburneum, M. flavum, M. phuwiangense, M. purpureonigrum, M. purpureum, and M. sulphureum) and asexual morphs are found in the remaining new species and also in M. sulphureum, M. purpureonigrum and M. purpureum. Metarhizium blattodeae, M. koreanum and M. viridulum are new records for Thailand. An alternative neotype for Metarhizium anisopliae is proposed based on multi-gene and 5'tef analyses showing that CBS 130.71 from Ukraine is more suitable, being from a much closer geographical location to Metchnikoff's Metarhizium anisopliae. This isolate is distinct from the neotype of Metarhizium anisopliae var. anisopliae proposed by M. Tulloch from Ethiopia (ARSEF 7487). Six new genera are established for monophyletic clades subtending the core Metarhizium clade, including Keithomyces, Marquandomyces, Papiliomyces, Purpureomyces, Sungia, and Yosiokobayasia. Metarhizium carneum, M. aciculare, and M. neogunnii are combined in Keithomyces and one new combination for M. marquandii in Marquandomyces is proposed. Purpureomyces is introduced for species producing purple stromata including a new combination for M. khaoyaiense and two new species P. maesotensis and P. pyriformis. Papiliomyces contains two new combinations for M. liangshanense and Metacordyceps shibinensis. The genus Sungia is proposed for the Korean species M. yongmunense on Lepidoptera pupa and Yosiokobayasia for the Japanese species M. kusanagiense also on Lepidoptera pupa. A synoptic and dichotomous key to the accepted taxa is provided together with tables listing distinguishing morphological characters between species, host preferences, and geography.

6.
Stud Mycol ; 95: 5-169, 2020 Mar.
Artículo en Inglés | MEDLINE | ID: mdl-32855739

RESUMEN

The Eurotiales is a relatively large order of Ascomycetes with members frequently having positive and negative impact on human activities. Species within this order gain attention from various research fields such as food, indoor and medical mycology and biotechnology. In this article we give an overview of families and genera present in the Eurotiales and introduce an updated subgeneric, sectional and series classification for Aspergillus and Penicillium. Finally, a comprehensive list of accepted species in the Eurotiales is given. The classification of the Eurotiales at family and genus level is traditionally based on phenotypic characters, and this classification has since been challenged using sequence-based approaches. Here, we re-evaluated the relationships between families and genera of the Eurotiales using a nine-gene sequence dataset. Based on this analysis, the new family Penicillaginaceae is introduced and four known families are accepted: Aspergillaceae, Elaphomycetaceae, Thermoascaceae and Trichocomaceae. The Eurotiales includes 28 genera: 15 genera are accommodated in the Aspergillaceae (Aspergillago, Aspergillus, Evansstolkia, Hamigera, Leiothecium, Monascus, Penicilliopsis, Penicillium, Phialomyces, Pseudohamigera, Pseudopenicillium, Sclerocleista, Warcupiella, Xerochrysium and Xeromyces), eight in the Trichocomaceae (Acidotalaromyces, Ascospirella, Dendrosphaera, Rasamsonia, Sagenomella, Talaromyces, Thermomyces, Trichocoma), two in the Thermoascaceae (Paecilomyces, Thermoascus) and one in the Penicillaginaceae (Penicillago). The classification of the Elaphomycetaceae was not part of this study, but according to literature two genera are present in this family (Elaphomyces and Pseudotulostoma). The use of an infrageneric classification system has a long tradition in Aspergillus and Penicillium. Most recent taxonomic studies focused on the sectional level, resulting in a well-established sectional classification in these genera. In contrast, a series classification in Aspergillus and Penicillium is often outdated or lacking, but is still relevant, e.g., the allocation of a species to a series can be highly predictive in what functional characters the species might have and might be useful when using a phenotype-based identification. The majority of the series in Aspergillus and Penicillium are invalidly described and here we introduce a new series classification. Using a phylogenetic approach, often supported by phenotypic, physiologic and/or extrolite data, Aspergillus is subdivided in six subgenera, 27 sections (five new) and 75 series (73 new, one new combination), and Penicillium in two subgenera, 32 sections (seven new) and 89 series (57 new, six new combinations). Correct identification of species belonging to the Eurotiales is difficult, but crucial, as the species name is the linking pin to information. Lists of accepted species are a helpful aid for researchers to obtain a correct identification using the current taxonomic schemes. In the most recent list from 2014, 339 Aspergillus, 354 Penicillium and 88 Talaromyces species were accepted. These numbers increased significantly, and the current list includes 446 Aspergillus (32 % increase), 483 Penicillium (36 % increase) and 171 Talaromyces (94 % increase) species, showing the large diversity and high interest in these genera. We expanded this list with all genera and species belonging to the Eurotiales (except those belonging to Elaphomycetaceae). The list includes 1 187 species, distributed over 27 genera, and contains MycoBank numbers, collection numbers of type and ex-type cultures, subgenus, section and series classification data, information on the mode of reproduction, and GenBank accession numbers of ITS, beta-tubulin (BenA), calmodulin (CaM) and RNA polymerase II second largest subunit (RPB2) gene sequences.

7.
Stud Mycol ; 93: 1-63, 2019 Jun.
Artículo en Inglés | MEDLINE | ID: mdl-30108412

RESUMEN

Aflatoxins and ochratoxins are among the most important mycotoxins of all and producers of both types of mycotoxins are present in Aspergillus section Flavi, albeit never in the same species. Some of the most efficient producers of aflatoxins and ochratoxins have not been described yet. Using a polyphasic approach combining phenotype, physiology, sequence and extrolite data, we describe here eight new species in section Flavi. Phylogenetically, section Flavi is split in eight clades and the section currently contains 33 species. Two species only produce aflatoxin B1 and B2 (A. pseudotamarii and A. togoensis), and 14 species are able to produce aflatoxin B1, B2, G1 and G2: three newly described species A. aflatoxiformans, A. austwickii and A. cerealis in addition to A. arachidicola, A. minisclerotigenes, A. mottae, A. luteovirescens (formerly A. bombycis), A. nomius, A. novoparasiticus, A. parasiticus, A. pseudocaelatus, A. pseudonomius, A. sergii and A. transmontanensis. It is generally accepted that A. flavus is unable to produce type G aflatoxins, but here we report on Korean strains that also produce aflatoxin G1 and G2. One strain of A. bertholletius can produce the immediate aflatoxin precursor 3-O-methylsterigmatocystin, and one strain of Aspergillus sojae and two strains of Aspergillus alliaceus produced versicolorins. Strains of the domesticated forms of A. flavus and A. parasiticus, A. oryzae and A. sojae, respectively, lost their ability to produce aflatoxins, and from the remaining phylogenetically closely related species (belonging to the A. flavus-, A. tamarii-, A. bertholletius- and A. nomius-clades), only A. caelatus, A. subflavus and A. tamarii are unable to produce aflatoxins. With exception of A. togoensis in the A. coremiiformis-clade, all species in the phylogenetically more distant clades (A. alliaceus-, A. coremiiformis-, A. leporis- and A. avenaceus-clade) are unable to produce aflatoxins. Three out of the four species in the A. alliaceus-clade can produce the mycotoxin ochratoxin A: A. alliaceus s. str. and two new species described here as A. neoalliaceus and A. vandermerwei. Eight species produced the mycotoxin tenuazonic acid: A. bertholletius, A. caelatus, A. luteovirescens, A. nomius, A. pseudocaelatus, A. pseudonomius, A. pseudotamarii and A. tamarii while the related mycotoxin cyclopiazonic acid was produced by 13 species: A. aflatoxiformans, A. austwickii, A. bertholletius, A. cerealis, A. flavus, A. minisclerotigenes, A. mottae, A. oryzae, A. pipericola, A. pseudocaelatus, A. pseudotamarii, A. sergii and A. tamarii. Furthermore, A. hancockii produced speradine A, a compound related to cyclopiazonic acid. Selected A. aflatoxiformans, A. austwickii, A. cerealis, A. flavus, A. minisclerotigenes, A. pipericola and A. sergii strains produced small sclerotia containing the mycotoxin aflatrem. Kojic acid has been found in all species in section Flavi, except A. avenaceus and A. coremiiformis. Only six species in the section did not produce any known mycotoxins: A. aspearensis, A. coremiiformis, A. lanosus, A. leporis, A. sojae and A. subflavus. An overview of other small molecule extrolites produced in Aspergillus section Flavi is given.

8.
Stud Mycol ; 93: 155-252, 2019 Jun.
Artículo en Inglés | MEDLINE | ID: mdl-31824584

RESUMEN

The genus Thielavia is morphologically defined by having non-ostiolate ascomata with a thin peridium composed of textura epidermoidea, and smooth, single-celled, pigmented ascospores with one germ pore. Thielavia is typified with Th. basicola that grows in close association with a hyphomycete which was traditionally identified as Thielaviopsis basicola. Besides Th. basicola exhibiting the mycoparasitic nature, the majority of the described Thielavia species are from soil, and some have economic and ecological importance. Unfortunately, no living type material of Th. basicola exists, hindering a proper understanding of the classification of Thielavia. Therefore, Thielavia basicola was neotypified by material of a mycoparasite presenting the same ecology and morphology as described in the original description. We subsequently performed a multi-gene phylogenetic analyses (rpb2, tub2, ITS and LSU) to resolve the phylogenetic relationships of the species currently recognised in Thielavia. Our results demonstrate that Thielavia is highly polyphyletic, being related to three family-level lineages in two orders. The redefined genus Thielavia is restricted to its type species, Th. basicola, which belongs to the Ceratostomataceae (Melanosporales) and its host is demonstrated to be Berkeleyomyces rouxiae, one of the two species in the "Thielaviopsis basicola" species complex. The new family Podosporaceae is sister to the Chaetomiaceae in the Sordariales and accommodates the re-defined genera Podospora, Trangularia and Cladorrhinum, with the last genus including two former Thielavia species (Th. hyalocarpa and Th. intermedia). This family also includes the genetic model species Podospora anserina, which was combined in Triangularia (as Triangularia anserina). The remaining Thielavia species fall in ten unrelated clades in the Chaetomiaceae, leading to the proposal of nine new genera (Carteria, Chrysanthotrichum, Condenascus, Hyalosphaerella, Microthielavia, Parathielavia, Pseudothielavia, Stolonocarpus and Thermothielavioides). The genus Canariomyces is transferred from Microascaceae (Microascales) to Chaetomiaceae based on its type species Can. notabilis. Canariomyces is closely related to the human-pathogenic genus Madurella, and includes three thielavia-like species and one novel species. Three monotypic genera with a chaetomium-like morph (Brachychaeta, Chrysocorona and Floropilus) are introduced to better resolve the Chaetomiaceae and the thielavia-like species in the family. Chrysocorona lucknowensis and Brachychaeta variospora are closely related to Acrophialophora and three newly introduced genera containing thielavia-like species; Floropilus chiversii is closely related to the industrially important and thermophilic species Thermothielavioides terrestris (syn. Th. terrestris). This study shows that the thielavia-like morph is a homoplastic form that originates from several separate evolutionary events. Furthermore, our results provide new insights into the taxonomy of Sordariales and the polyphyletic Lasiosphaeriaceae.

9.
Stud Mycol ; 93: 65-153, 2019 Jun.
Artículo en Inglés | MEDLINE | ID: mdl-30210181

RESUMEN

The traditional concept of the genus Humicola includes species that produce pigmented, thick-walled and single-celled spores laterally or terminally on hyphae or minimally differentiated conidiophores. More than 50 species have been described in the genus. Species commonly occur in soil, indoor environments, and compost habitats. The taxonomy of Humicola and morphologically similar genera is poorly understood in modern terms. Based on a four-locus phylogeny, the morphological concept of Humicola proved to be polyphyletic. The type of Humicola, H. fuscoatra, belongs to the Chaetomiaceae. In the Chaetomiaceae, species producing humicola-like thick-walled spores are distributed among four lineages: Humicola sensu stricto, Mycothermus, Staphylotrichum, and Trichocladium. In our revised concept of Humicola, asexual and sexually reproducing species both occur. The re-defined Humicola contains 24 species (seven new and thirteen new combinations), which are described and illustrated in this study. The species in this genus produce conidia that are lateral, intercalary or terminal on/in hyphae, and conidiophores are not formed or are minimally developed (micronematous). The ascospores of sexual Humicola species are limoniform to quadrangular in face view and bilaterally flattened with one apical germ pore. Seven species are accepted in Staphylotrichum (four new species, one new combination). Thick-walled conidia of Staphylotrichum species usually arise either from hyphae (micronematous) or from apically branched, seta-like conidiophores (macronematous). The sexual morph represented by Staphylotrichum longicolleum (= Chaetomium longicolleum) produces ascomata with long necks composed of a fused basal part of the terminal hairs, and ascospores that are broad limoniform to nearly globose, bilaterally flattened, with an apical germ pore. The Trichocladium lineage has a high morphological diversity in both asexual and sexual structures. Phylogenetic analysis revealed four subclades in this lineage. However, these subclades are genetically closely related, and no distinctive phenotypic characters are linked to any of them. Fourteen species are accepted in Trichocladium, including one new species, twelve new combinations. The type species of Gilmaniella, G. humicola, belongs to the polyphyletic family Lasiosphaeriaceae (Sordariales), but G. macrospora phylogenetically belongs to Trichocladium. The thermophilic genus Mycothermus and the type species My. thermophilum are validated, and one new Mycothermus species is described. Phylogenetic analyses show that Remersonia, another thermophilic genus, is sister to Mycothermus and two species are known, including one new species. Thermomyces verrucosus produces humicola-like conidia and is transferred to Botryotrichum based on phylogenetic affinities. This study is a first attempt to establish an inclusive modern classification of Humicola and humicola-like genera of the Chaetomiaceae. More research is needed to determine the phylogenetic relationships of "humicola"-like species outside the Chaetomiaceae.

10.
Stud Mycol ; 89: 177-301, 2018 Mar.
Artículo en Inglés | MEDLINE | ID: mdl-29681671

RESUMEN

As part of a worldwide survey of the indoor mycobiota about 520 new Cladosporium isolates from indoor environments mainly collected in China, Europe, New Zealand, North America and South Africa were investigated by using a polyphasic approach to determine their species identity. All Cladosporium species occurring in indoor environments are fully described and illustrated. Fourty-six Cladosporium species are treated of which 16 species are introduced as new. A key for the most common Cladosporium species isolated from indoor environments is provided. Cladosporium halotolerans proved to be the most frequently isolated Cladosporium species indoors.

11.
Stud Mycol ; 88: 1-35, 2017 Sep.
Artículo en Inglés | MEDLINE | ID: mdl-28413236

RESUMEN

Scopulariopsis-like species are often reported from the indoor environment, as well as from clinical samples. The lack of type isolates and thorough phylogenetic studies in the Microascaceae hampered the correct identification of these isolates. Based on recent phylogenetic studies, which resulted in multiple name changes, the aim is to molecularly identify the Scopulariopsis and scopulariopsis-like species which occur in the indoor environment and give an overview of the current species in these genera and their habitats. Strains from the CBS culture collection were supplemented with almost 80 indoor strains of which the internal transcribed spacer 1 and 2 and intervening 5.8S nrDNA (ITS), beta-tubulin (tub2) and translation elongation factor 1-alpha (tef1) gene regions were sequenced for phylogenetic inference. The multi-gene phylogenies recognise 33 Microascus species and 12 Scopulariopsis species and showed that the recently established genus Fuscoannellis, typified by Scopulariopsis carbonaria, should be synonymized with the genus Yunnania. Seven new Microascus species, four new Scopulariopsis species, and one new Yunnania species, are described, and a new name in Microascus and two new name combinations (one in Microascus, and one in Yunnania) are proposed. In the indoor environment 14 Microascus species and three Scopulariopsis species were found. Scopulariopsis brevicaulis (22 indoor isolates) and Microascus melanosporus (19 indoor isolates) are the most common indoor species, in number of isolates, followed by M. paisii (8 indoor isolates) and S. candida (7 indoor isolates). A genus phylogeny based on the ITS, tef1 and the large subunit 28S nrDNA (LSU) of the type or representative isolates of all here recognised species is provided depicting all species habitats. No correlation between phylogenetic relationship and habitat preference could be observed. Ten species which are found indoor are also found in relation with human-derived samples. A table showing recent name changes and a key to common species of Scopulariopsis and scopulariopsis-like genera found indoors is included.

12.
Stud Mycol ; 88: 137-159, 2017 Sep.
Artículo en Inglés | MEDLINE | ID: mdl-29158610

RESUMEN

A recent taxonomic revision of Microascaceae with an emphasis on synnematous fungi enabled re-identification of previously isolated indoor strains of Cephalotrichum. All available Cephalotrichum strains from the culture collection of the Westerdijk Institute were studied, 20 originating from the built environment. Phylogenetic relationships were inferred from DNA sequence data from the internal transcribed spacer 1 and 2 and intervening 5.8S nrDNA (ITS), and parts of ß-tubulin (tub2) and translation elongation factor 1-α (tef1) genes. Additionally, herbarium material of 14 Cephalotrichum species described from soil in China was studied, and the taxonomy of C. album, not considered in recent revisions, was reevaluated. Sixteen phylogenetic species in Cephalotrichum are distinguished, five described as new species: C. domesticum, C. lignatile, C. telluricum, C. tenuissimum and C. transvaalense. Five Cephalotrichum species occur in the built environment: C. domesticum, C. gorgonifer (formerly known as Trichurus spiralis), C. microsporum, C. purpureofuscum, and C. verrucisporum. Based on the number of isolates, C. gorgonifer (nine strains) is the most common indoor species. The study of the Chinese herbarium material resulted in the acceptance of three additional Cephalotrichum species: C. casteneum, C. ellipsoideum, and C. spirale. Four species are considered nomena dubia (C. cylindrosporum, C. macrosporum, C. ovoideum, and C. robustum), five are placed in synonymy with other Cephalotrichum species (C. acutisporum, C. inflatum, C. longicollum, C. oblongum, C. terricola) and one species, C. verrucipes, is probably a synonym of Penicillium clavigerum. Cephalotrichum columnare, former Doratomyces columnaris, is transferred to Kernia. Cephalotrichum album, formerly known as Doratomyces putredinis, is transferred to Acaulium and redescribed.

13.
Stud Mycol ; 86: 29-51, 2017 Mar.
Artículo en Inglés | MEDLINE | ID: mdl-28539687

RESUMEN

The genus Monascus was described by van Tieghem (1884) to accommodate M. ruber and M. mucoroides, two species with non-ostiolate ascomata. Species delimitation in the genus is still mainly based on phenotypic characters, and taxonomic studies that include sequence data are limited. The genus is of economic importance. Species are used in fermented Asian foods as food colourants (e.g. 'red rice' (ang-kak, angka)) and found as spoilage organisms, and recently Monascus was found to be essential in the lifecycle of stingless bees. In this study, a polyphasic approach was applied combining morphological characters, ITS, LSU, ß-tubulin, calmodulin and RNA polymerase II second largest subunit sequences and extrolite data, to delimit species and to study phylogenetic relationships in Monascus. Furthermore, 30 Monascus isolates from honey, pollen and nests of stingless bees in Brazil were included. Based on this polyphasic approach, the genus Monascus is resolved in nine species, including three new species associated with stingless bees (M. flavipigmentosus sp. nov., M. mellicola sp. nov., M. recifensis sp. nov., M. argentinensis, M. floridanus, M. lunisporas, M. pallens, M. purpureus, M. ruber), and split in two new sections (section Floridani sect. nov., section Rubri sect. nov.). Phylogenetic analysis showed that the xerophile Monascus eremophilus does not belong in Monascus and monophyly in Monascus is restored with the transfer of M. eremophilus to Penicillium (P. eremophilum comb. nov.). A list of accepted and excluded Monascus and Basipetospora species is given, together with information on (ex-)types cultures and barcode sequence data.

14.
Stud Mycol ; 88: 161-236, 2017 Sep.
Artículo en Inglés | MEDLINE | ID: mdl-29158611

RESUMEN

Aspergillus section Restricti together with sister section Aspergillus (formerly Eurotium) comprises xerophilic species, that are able to grow on substrates with low water activity and in extreme environments. We adressed the monophyly of both sections within subgenus Aspergillus and applied a multidisciplinary approach for definition of species boundaries in sect. Restricti. The monophyly of sections Aspergillus and Restricti was tested on a set of 102 isolates comprising all currently accepted species and was strongly supported by Maximum likelihood (ML) and Bayesian inferrence (BI) analysis based on ß-tubulin (benA), calmodulin (CaM) and RNA polymerase II second largest subunit (RPB2) loci. More than 300 strains belonging to sect. Restricti from various isolation sources and four continents were characterized by DNA sequencing, and 193 isolates were selected for phylogenetic analyses and phenotypic studies. Species delimitation methods based on multispecies coalescent model were employed on DNA sequences from four loci, i.e., ID region of rDNA (ITS + 28S), CaM, benA and RPB2, and supported recognition of 21 species, including 14 new. All these species were also strongly supported in ML and BI analyses. All recognised species can be reliably identified by all four examined genetic loci. Phenotype analysis was performed to support the delimitation of new species and includes colony characteristics on seven cultivation media incubated at several temperatures, growth on an osmotic gradient (six media with NaCl concentration from 0 to 25 %) and analysis of morphology including scanning electron microscopy. The micromorphology of conidial heads, vesicle dimensions, temperature profiles and growth parameters in osmotic gradient were useful criteria for species identification. The vast majority of species in sect. Restricti produce asperglaucide, asperphenamate or both in contrast to species in sect. Aspergillus. Mycophenolic acid was detected for the first time in at least six members of the section. The ascomata of A. halophilicus do not contain auroglaucin, epiheveadride or flavoglaucin which are common in sect. Aspergillus, but shares the echinulins with sect. Aspergillus.

15.
Stud Mycol ; 88: 37-135, 2017 Sep.
Artículo en Inglés | MEDLINE | ID: mdl-28860671

RESUMEN

Aspergillus section Aspergillus (formerly the genus Eurotium) includes xerophilic species with uniseriate conidiophores, globose to subglobose vesicles, green conidia and yellow, thin walled eurotium-like ascomata with hyaline, lenticular ascospores. In the present study, a polyphasic approach using morphological characters, extrolites, physiological characters and phylogeny was applied to investigate the taxonomy of this section. Over 500 strains from various culture collections and new isolates obtained from indoor environments and a wide range of substrates all over the world were identified using calmodulin gene sequencing. Of these, 163 isolates were subjected to molecular phylogenetic analyses using sequences of ITS rDNA, partial ß-tubulin (BenA), calmodulin (CaM) and RNA polymerase II second largest subunit (RPB2) genes. Colony characteristics were documented on eight cultivation media, growth parameters at three incubation temperatures were recorded and micromorphology was examined using light microscopy as well as scanning electron microscopy to illustrate and characterize each species. Many specific extrolites were extracted and identified from cultures, including echinulins, epiheveadrides, auroglaucins and anthraquinone bisanthrons, and to be consistent in strains of nearly all species. Other extrolites are species-specific, and thus valuable for identification. Several extrolites show antioxidant effects, which may be nutritionally beneficial in food and beverages. Important mycotoxins in the strict sense, such as sterigmatocystin, aflatoxins, ochratoxins, citrinin were not detected despite previous reports on their production in this section. Adopting a polyphasic approach, 31 species are recognized, including nine new species. ITS is highly conserved in this section and does not distinguish species. All species can be differentiated using CaM or RPB2 sequences. For BenA, Aspergillus brunneus and A. niveoglaucus share identical sequences. Ascospores and conidia morphology, growth rates at different temperatures are most useful characters for phenotypic species identification.

16.
Stud Mycol ; 85: 65-89, 2016 Sep.
Artículo en Inglés | MEDLINE | ID: mdl-28050054

RESUMEN

Species belonging to Aspergillus section Cervini are characterised by radiate or short columnar, fawn coloured, uniseriate conidial heads. The morphology of the taxa in this section is very similar and isolates assigned to these species are frequently misidentified. In this study, a polyphasic approach was applied using morphological characters, extrolite data, temperature profiles and partial BenA, CaM and RPB2 sequences to examine the relationships within this section. Based on this taxonomic approach the section Cervini is resolved in ten species including six new species: A. acidohumus, A. christenseniae, A. novoguineensis, A. subnutans, A. transcarpathicus and A. wisconsinensis. A dichotomous key for the identification is provided.

17.
Stud Mycol ; 84: 119-144, 2016 Jun.
Artículo en Inglés | MEDLINE | ID: mdl-28070136

RESUMEN

Talaromyces contains both asexual and sexually reproducing species. This genus is divided in seven sections and currently has 105 accepted species. In this study we investigated the Talaromyces isolates that were obtained during a study of indoor air collected in Beijing, China. These indoor Talaromyces strains are resolved in four sections, seven of them are identified as T. islandicus, T. aurantiacus, T. siamensis and T. albobiverticillius according to BenA sequences, while 14 isolates have divergent sequences and are described here as nine new species. The new species are placed in four sections, namely sections Helici, Islandici, Talaromyces and Trachyspermi. They are described based on sequence data (ITS, BenA, CaM and RPB2) in combination with phenotypic and extrolite characters. Morphological descriptions and notes for distinguishing similar species are provided for each new species. The recently described T. rubrifaciens is synonymised with T. albobiverticillius based on presented phylogenetic results.

18.
Stud Mycol ; 85: 107-124, 2016 Sep.
Artículo en Inglés | MEDLINE | ID: mdl-28050056

RESUMEN

A culture-based survey of staining fungi on oil-treated timber after outdoor exposure in Australia and the Netherlands uncovered new taxa in Pezizomycotina. Their taxonomic novelty was confirmed by phylogenetic analyses of multi-locus sequences (ITS, nrSSU, nrLSU, mitSSU, RPB1, RPB2, and EF-1α) using multiple reference data sets. These previously unknown taxa are recognised as part of a new order (Superstratomycetales) potentially closely related to Trypetheliales (Dothideomycetes), and as a new species of Cyanodermella, C. oleoligni in Stictidaceae (Ostropales) part of the mostly lichenised class Lecanoromycetes. Within Superstratomycetales a single genus named Superstratomyces with three putative species: S. flavomucosus, S. atroviridis, and S. albomucosus are formally described. Monophyly of each circumscribed Superstratomyces species was highly supported and the intraspecific genetic variation was substantially lower than interspecific differences detected among species based on the ITS, nrLSU, and EF-1α loci. Ribosomal loci for all members of Superstratomyces were noticeably different from all fungal sequences available in GenBank. All strains from this genus grow slowly in culture, have darkly pigmented mycelia and produce pycnidia. The strains of C. oleoligni form green colonies with slimy masses and develop green pycnidia on oatmeal agar. These new taxa could not be classified reliably at the class and lower taxonomic ranks by sequencing from the substrate directly or based solely on culture-dependent morphological investigations. Coupling phenotypic observations with multi-locus sequencing of fungi isolated in culture enabled these taxonomic discoveries. Outdoor situated timber provides a great potential for culturable undescribed fungal taxa, including higher rank lineages as revealed by this study, and therefore, should be further explored.

19.
Stud Mycol ; 84: 1-118, 2016 Jun.
Artículo en Inglés | MEDLINE | ID: mdl-28050053

RESUMEN

Aspergillus section Nidulantes includes species with striking morphological characters, such as biseriate conidiophores with brown-pigmented stipes, and if present, the production of ascomata embedded in masses of Hülle cells with often reddish brown ascospores. The majority of species in this section have a sexual state, which were named Emericella in the dual name nomenclature system. In the present study, strains belonging to subgenus Nidulantes were subjected to multilocus molecular phylogenetic analyses using internal transcribed spacer region (ITS), partial ß-tubulin (BenA), calmodulin (CaM) and RNA polymerase II second largest subunit (RPB2) sequences. Nine sections are accepted in subgenus Nidulantes including the new section Cavernicolus. A polyphasic approach using morphological characters, extrolites, physiological characters and phylogeny was applied to investigate the taxonomy of section Nidulantes. Based on this approach, section Nidulantes is subdivided in seven clades and 65 species, and 10 species are described here as new. Morphological characters including colour, shape, size, and ornamentation of ascospores, shape and size of conidia and vesicles, growth temperatures are important for identifying species. Many species of section Nidulantes produce the carcinogenic mycotoxin sterigmatocystin. The most important mycotoxins in Aspergillus section Nidulantes are aflatoxins, sterigmatocystin, emestrin, fumitremorgins, asteltoxins, and paxillin while other extrolites are useful drugs or drug lead candidates such as echinocandins, mulundocandins, calbistrins, varitriols, variecolins and terrain. Aflatoxin B1 is produced by four species: A. astellatus, A. miraensis, A. olivicola, and A. venezuelensis.

20.
Stud Mycol ; 84: 145-224, 2016 Jun.
Artículo en Inglés | MEDLINE | ID: mdl-28082757

RESUMEN

During a study of indoor fungi, 145 isolates belonging to Chaetomiaceae were cultured from air, swab and dust samples from 19 countries. Based on the phylogenetic analyses of DNA-directed RNA polymerase II second largest subunit (rpb2), ß-tubulin (tub2), ITS and 28S large subunit (LSU) nrDNA sequences, together with morphological comparisons with related genera and species, 30 indoor taxa are recognised, of which 22 represent known species, seven are described as new, and one remains to be identified to species level. In our collection, 69 % of the indoor isolates with six species cluster with members of the Chaetomium globosum species complex, representing Chaetomium sensu stricto. The other indoor species fall into nine lineages that are separated from each other with several known chaetomiaceous genera occurring among them. No generic names are available for five of those lineages, and the following new genera are introduced here: Amesia with three indoor species, Arcopilus with one indoor species, Collariella with four indoor species, Dichotomopilus with seven indoor species and Ovatospora with two indoor species. The generic concept of Botryotrichum is expanded to include Emilmuelleria and the chaetomium-like species B. muromum (= Ch. murorum) in which two indoor species are included. The generic concept of Subramaniula is expanded to include several chaetomium-like taxa as well as one indoor species. Humicola is recognised as a distinct genus including two indoor taxa. According to this study, Ch. globosum is the most abundant Chaetomiaceae indoor species (74/145), followed by Ch. cochliodes (17/145), Ch. elatum (6/145) and B. piluliferum (5/145). The morphological diversity of indoor Chaetomiaceae as well as the morphological characteristics of the new genera are described and illustrated. This taxonomic study redefines the generic concept of Chaetomium and provides new insight into the phylogenetic relationships among different genera within Chaetomiaceae.

SELECCIÓN DE REFERENCIAS
DETALLE DE LA BÚSQUEDA