Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 20 de 44
Filtrar
1.
Int J Mol Sci ; 25(1)2023 Dec 30.
Artículo en Inglés | MEDLINE | ID: mdl-38203697

RESUMEN

X-ray fluorescence imaging (XRF-imaging) with subcellular resolution is used to study the intracellular integrity of a protein corona that was pre-formed around gold nanoparticles (AuNP). Artificial proteins engineered to obtain Gd coordination for detection by XRF-imaging were used to form the corona. Indications about the degradation of this protein corona at a cellular and subcellular level can be observed by following the Au and Gd quantities in a time and spatial-dependent manner. The extended acquisition times necessary for capturing individual XRF-imaging cell images result in relatively small sample populations, stressing the need for faster image acquisition strategies in future XRF-imaging-based studies to deal with the inherent variability between cells. Still, results obtained reveal degradation of the protein corona during cellular trafficking, followed by differential cellular processing for AuNP and Gd-labelled proteins. Overall, this demonstrates that the dynamic degradation of the protein corona can be tracked by XRF-imaging to a certain degree.


Asunto(s)
Nanopartículas del Metal , Corona de Proteínas , Rayos X , Oro , Imagen Óptica
2.
Small ; 18(37): e2201324, 2022 09.
Artículo en Inglés | MEDLINE | ID: mdl-35905490

RESUMEN

X-ray photon correlation spectroscopy (XPCS), a synchrotron source-based technique to measure sample dynamics, is used to determine hydrodynamic diameters of gold nanoparticles (Au NPs) of different sizes in biological environments. In situ determined hydrodynamic diameters are benchmarked with values obtained by dynamic light scattering. The technique is then applied to analyze the behavior of the Au NPs in a biological environment. First, a concentration-dependent agglomeration in the presence of NaCl is determined. Second, concentration-dependent increase in hydrodynamic diameter of the Au NPs upon the presence of proteins is determined. As X-rays in the used energy range are barely scattered by biological matter, dynamics of the Au NPs can be also detected in situ in complex biological environments, such as blood. These measurements demonstrate the possibility of XPCS for in situ analytics of nanoparticles (NPs) in biological environments where similar detection techniques based on visible light would severely suffer from scattering, absorption, and reflection effects.


Asunto(s)
Oro , Nanopartículas del Metal , Dispersión Dinámica de Luz , Oro/química , Nanopartículas del Metal/química , Análisis Espectral , Rayos X
3.
Small ; 18(38): e2203070, 2022 09.
Artículo en Inglés | MEDLINE | ID: mdl-35986441

RESUMEN

Nanoparticles are well established vectors for the delivery of a wide range of biomedically relevant cargoes. Numerous studies have investigated the impact of size, shape, charge, and surface functionality of nanoparticles on mammalian cellular uptake. Rigidity has been studied to a far lesser extent, and its effects are still unclear. Here, the importance of this property, and its interplay with particle size, is systematically explored using a library of core-shell spherical PEGylated nanoparticles synthesized by RAFT emulsion polymerization. Rigidity of these particles is controlled by altering the intrinsic glass transition temperature of their constituting polymers. Three polymeric core rigidities are tested: hard, medium, and soft using two particle sizes, 50 and 100 nm diameters. Cellular uptake studies indicate that softer particles are taken up faster and threefold more than harder nanoparticles with the larger 100 nm particles. In addition, the study indicates major differences in the cellular uptake pathway, with harder particles being internalized through clathrin- and caveolae-mediated endocytosis as well as macropinocytosis, while softer particles are taken up bycaveolae- and non-receptormediated endocytosis. However, 50 nm derivatives do not show any appreciable differences in uptake efficiency, suggesting that rigidity as a parameter in the biological regime may be size dependent.


Asunto(s)
Clatrina , Nanopartículas , Animales , Clatrina/metabolismo , Emulsiones , Endocitosis , Mamíferos/metabolismo , Nanopartículas/metabolismo , Tamaño de la Partícula , Polietilenglicoles , Polímeros/farmacología
4.
J Am Chem Soc ; 143(48): 20224-20240, 2021 12 08.
Artículo en Inglés | MEDLINE | ID: mdl-34808054

RESUMEN

The Pt(IV) prodrug trans, trans, trans-[Pt(pyridine)2(N3)2(OH)2] (Pt1) and its coumarin derivative trans, trans, trans-[Pt(pyridine)2(N3)2(OH)(coumarin-3-carboxylate)] (Pt2) are promising agents for photoactivated chemotherapy. These complexes are inert in the dark but release Pt(II) species and radicals upon visible light irradiation, resulting in photocytotoxicity toward cancer cells. Here, we have used synchrotron techniques to investigate the in-cell behavior of these prodrugs and visualize, for the first time, changes in cellular morphology and Pt localization upon treatment with and without light irradiation. We show that photoactivation of Pt2 induces remarkable cellular damage with extreme alterations to multiple cellular components, including formation of vacuoles, while also significantly increasing the cellular accumulation of Pt species compared to dark conditions. X-ray absorption near-edge structure (XANES) measurements in cells treated with Pt2 indicate only partial reduction of the prodrug upon irradiation, highlighting that phototoxicity in cancer cells may involve not only Pt(II) photoproducts but also photoexcited Pt(IV) species.


Asunto(s)
Antineoplásicos/farmacología , Complejos de Coordinación/farmacología , Profármacos/farmacología , Antineoplásicos/química , Antineoplásicos/efectos de la radiación , Proliferación Celular/efectos de los fármacos , Complejos de Coordinación/química , Complejos de Coordinación/efectos de la radiación , Humanos , Luz , Células PC-3 , Platino (Metal)/química , Platino (Metal)/efectos de la radiación , Profármacos/química , Profármacos/efectos de la radiación , Análisis de la Célula Individual
5.
Biomacromolecules ; 22(2): 710-722, 2021 02 08.
Artículo en Inglés | MEDLINE | ID: mdl-33350825

RESUMEN

Particle shape has been described as a key factor in improving cell internalization and biodistribution among the different properties investigated for drug-delivery systems. In particular, tubular structures have been identified as promising candidates for improving drug delivery. Here, we investigate the influence of different design elements of cyclic peptide-polymer nanotubes (CPNTs) on cellular uptake including the nature and length of the polymer and the cyclic peptide building block. By varying the composition of these cyclic peptide-polymer conjugates, a library of CPNTs of lengths varying from a few to over a 150 nm were synthesized and characterized using scattering techniques (small-angle neutron scattering and static light scattering). In vitro studies with fluorescently labeled CPNTs have shown that nanotubes comprised of a single polymer arm with a size between 8 and 16 nm were the most efficiently taken up by three different mammalian cell lines. A mechanistic study on multicellular tumor spheroids has confirmed the ability of these compounds to penetrate to their core. Variations in the proportion of paracellular and transcellular uptake with the self-assembling potential of the CPNT were also observed, giving key insights about the behavior of CPNTs in cellular systems.


Asunto(s)
Nanotubos de Péptidos , Nanotubos , Animales , Péptidos Cíclicos , Polímeros , Distribución Tisular
6.
Angew Chem Int Ed Engl ; 60(12): 6462-6472, 2021 03 15.
Artículo en Inglés | MEDLINE | ID: mdl-33590607

RESUMEN

Most metallodrugs are prodrugs that can undergo ligand exchange and redox reactions in biological media. Here we have investigated the cellular stability of the anticancer complex [OsII [(η6 -p-cymene)(RR/SS-MePh-DPEN)] [1] (MePh-DPEN=tosyl-diphenylethylenediamine) which catalyses the enantioselective reduction of pyruvate to lactate in cells. The introduction of a bromide tag at an unreactive site on a phenyl substituent of Ph-DPEN allowed us to probe the fate of this ligand and Os in human cancer cells by a combination of X-ray fluorescence (XRF) elemental mapping and inductively coupled plasma-mass spectrometry (ICP-MS). The BrPh-DPEN ligand is readily displaced by reaction with endogenous thiols and translocated to the nucleus, whereas the Os fragment is exported from the cells. These data explain why the efficiency of catalysis is low, and suggests that it could be optimised by developing thiol resistant analogues. Moreover, this work also provides a new way for the delivery of ligands which are inactive when administered on their own.


Asunto(s)
Antineoplásicos/química , Estructuras Metalorgánicas/química , Osmio/química , Antineoplásicos/farmacología , Catálisis , Línea Celular Tumoral , Proliferación Celular/efectos de los fármacos , Supervivencia Celular/efectos de los fármacos , Humanos , Hidrogenación , Estructuras Metalorgánicas/farmacología , Conformación Molecular , Osmio/farmacología
7.
J Biol Inorg Chem ; 25(2): 295-303, 2020 03.
Artículo en Inglés | MEDLINE | ID: mdl-32124100

RESUMEN

The organoiridium complex Ir[(C,N)2(O,O)] (1) where C, N = 1-phenylisoquinoline and O,O = 2,2,6,6-tetramethyl-3,5-heptanedionate is a promising photosensitiser for Photo-Dynamic Therapy (PDT). 1 is not toxic to cells in the dark. However, irradiation of the compound with one-photon blue or two-photon red light generates high levels of singlet oxygen (1O2) (in Zhang et al. Angew Chem Int Ed Engl 56 (47):14898-14902 https://doi.org/10.1002/anie.201709082,2017), both within cell monolayers and in tumour models. Moreover, photo-excited 1 oxidises key proteins, causing metabolic alterations in cancer cells with potent antiproliferative activity. Here, the tomograms obtained by cryo-Soft X-ray Tomography (cryo-SXT) of human PC3 prostate cancer cells treated with 1, irradiated with blue light, and cryopreserved to maintain them in their native state, reveal that irradiation causes extensive and specific alterations to mitochondria, but not other cellular components. Such new insights into the effect of 1O2 generation during PDT using iridium photosensitisers on cells contribute to a detailed understanding of their cellular mode of action.


Asunto(s)
Antineoplásicos/farmacología , Complejos de Coordinación/farmacología , Criopreservación , Mitocondrias/efectos de los fármacos , Fotoquimioterapia , Fármacos Fotosensibilizantes/farmacología , Neoplasias de la Próstata/tratamiento farmacológico , Antineoplásicos/síntesis química , Antineoplásicos/química , Proliferación Celular/efectos de los fármacos , Complejos de Coordinación/síntesis química , Complejos de Coordinación/química , Ensayos de Selección de Medicamentos Antitumorales , Humanos , Iridio/química , Iridio/farmacología , Masculino , Mitocondrias/metabolismo , Conformación Molecular , Células PC-3 , Fármacos Fotosensibilizantes/síntesis química , Fármacos Fotosensibilizantes/química , Neoplasias de la Próstata/metabolismo , Neoplasias de la Próstata/patología , Tomografía Computarizada por Rayos X
8.
Chemistry ; 26(22): 4980-4987, 2020 Apr 16.
Artículo en Inglés | MEDLINE | ID: mdl-31999015

RESUMEN

The metallation of nucleic acids is key to wide-ranging applications, from anticancer medicine to nanomaterials, yet there is a lack of understanding of the molecular-level effects of metallation. Here, we apply single-molecule fluorescence methods to study the reaction of an organo-osmium anticancer complex and DNA. Individual metallated DNA hairpins are characterised using Förster resonance energy transfer (FRET). Although ensemble measurements suggest a simple two-state system, single-molecule experiments reveal an underlying heterogeneity in the oligonucleotide dynamics, attributable to different degrees of metallation of the GC-rich hairpin stem. Metallated hairpins display fast two-state transitions with a two-fold increase in the opening rate to ≈2 s-1 , relative to the unmodified hairpin, and relatively static conformations with long-lived open (and closed) states of 5 to ≥50 s. These studies show that a single-molecule approach can provide new insight into metallation-induced changes in DNA structure and dynamics.


Asunto(s)
Antineoplásicos/química , ADN/química , Antineoplásicos/farmacología , ADN/metabolismo , Fluorescencia , Transferencia Resonante de Energía de Fluorescencia , Nanotecnología , Conformación de Ácido Nucleico
9.
Int J Mol Sci ; 21(3)2020 Feb 03.
Artículo en Inglés | MEDLINE | ID: mdl-32028729

RESUMEN

Biofouling is a major issue in the field of nanomedicine and consists of the spontaneous and unwanted adsorption of biomolecules on engineered surfaces. In a biological context and referring to nanoparticles (NPs) acting as nanomedicines, the adsorption of biomolecules found in blood (mostly proteins) is known as protein corona. On the one hand, the protein corona, as it covers the NPs' surface, can be considered the biological identity of engineered NPs, because the corona is what cells will "see" instead of the underlying NPs. As such, the protein corona will influence the fate, integrity, and performance of NPs in vivo. On the other hand, the physicochemical properties of the engineered NPs, such as their size, shape, charge, or hydrophobicity, will influence the identity of the proteins attracted to their surface. In this context, the design of coatings for NPs and surfaces that avoid biofouling is an active field of research. The gold standard in the field is the use of polyethylene glycol (PEG) molecules, although zwitterions have also proved to be efficient in preventing protein adhesion and fluorinated molecules are emerging as coatings with interesting properties. Hence, in this review, we will focus on recent examples of anti-biofouling coatings in three main areas, that is, PEGylated, zwitterionic, and fluorinated coatings.


Asunto(s)
Incrustaciones Biológicas/prevención & control , Materiales Biocompatibles Revestidos/química , Nanopartículas/química , Polietilenglicoles/química , Corona de Proteínas/química , Humanos , Propiedades de Superficie
10.
Bioconjug Chem ; 30(11): 2751-2762, 2019 11 20.
Artículo en Inglés | MEDLINE | ID: mdl-31621306

RESUMEN

In solution, nanoparticles may be conceptually compartmentalized into cores and engineered surface coatings. Recent advances allow for simple and accurate characterization of nanoparticle cores and surface shells. After introduction into a complex biological environment, adsorption of biological molecules to the nanoparticle surface as well as a loss of original surface components occur. Thus, colloidal nanoparticles in the context of the biological environment are hybrid materials with complex structure, which may result in different chemical, physical, and biological outcomes as compared to the original engineered nanoparticles. In this review, we will discuss building up an engineered inorganic nanoparticle from its inside core to its outside surface and following its degradation in a biological environment from its outside to its inside. This will involve the way to synthesize selected inorganic nanoparticles. Then, we will discuss the environmental changes upon exposure of these nanoparticles to biological media and their uptake by cells. Next, the intracellular fate of nanoparticles and their degradation will be discussed. Based on these examples, the need to see nanoparticles in the context of the biological environment as dynamic hybrid materials will be highlighted.


Asunto(s)
Biopolímeros/química , Coloides/química , Ambiente , Compuestos Inorgánicos/química , Nanopartículas/química , Humanos
11.
Biomacromolecules ; 19(1): 239-247, 2018 01 08.
Artículo en Inglés | MEDLINE | ID: mdl-29156128

RESUMEN

Functional drug carrier systems have potential for increasing solubility and potency of drugs while reducing side effects. Complex polymeric materials, particularly anisotropic structures, are especially attractive due to their long circulation times. Here, we have conjugated cyclic peptides to the biocompatible polymer poly(2-hydroxypropyl methacrylamide) (pHPMA). The resulting conjugates were functionalized with organoiridium anticancer complexes. Small angle neutron scattering and static light scattering confirmed their self-assembly and elongated cylindrical shape. Drug-loaded nanotubes exhibited more potent antiproliferative activity toward human cancer cells than either free drug or the drug-loaded polymers, while the nanotubes themselves were nontoxic. Cellular accumulation studies revealed that the increased potency of the conjugate appears to be related to a more efficient mode of action rather than a higher cellular accumulation of iridium.


Asunto(s)
Antineoplásicos/administración & dosificación , Sistemas de Liberación de Medicamentos , Nanotubos/química , Compuestos Organometálicos/administración & dosificación , Péptidos Cíclicos/química , Polímeros/química , Antineoplásicos/farmacocinética , Línea Celular Tumoral , Humanos , Espectroscopía de Resonancia Magnética , Neutrones , Compuestos Organometálicos/farmacocinética , Dispersión del Ángulo Pequeño , Espectroscopía Infrarroja por Transformada de Fourier
12.
Chemistry ; 23(11): 2512-2516, 2017 Feb 21.
Artículo en Inglés | MEDLINE | ID: mdl-28012260

RESUMEN

A variety of transition metal complexes exhibit anticancer activity, but their target sites in cells need to be identified and mechanisms of action elucidated. Here, it was found that the sub-cellular distribution of [Os(η6 -p-cym)(Azpy-NMe2 )I]+ (p-cym=p-cymene, Azpy-NMe2 =2-(p-[dimethylamino]phenylazo)pyridine) (1), a promising drug candidate, can be mapped in human ovarian cancer cells at pharmacological concentrations using a synchrotron X-ray fluorescence nanoprobe (SXRFN). SXRFN data for Os, Zn, Ca, and P, as well as TEM and ICP analysis of mitochondrial fractions suggest localization of Os in mitochondria and not in the nucleus, accompanied by mobilization of Ca from the endoplasmic reticulum, a signaling event for cell death. These data are consistent with the ability of 1 to induce rapid bursts of reactive oxygen species and especially superoxide formed in the first step of O2 reduction in mitochondria. Such metabolic targeting differs from the action of Pt drugs, offering promise for combatting Pt resistance, which is a current clinical problem.


Asunto(s)
Antineoplásicos/química , Complejos de Coordinación/química , Colorantes Fluorescentes/química , Nanoestructuras/química , Osmio/química , Antineoplásicos/síntesis química , Antineoplásicos/toxicidad , Puntos de Control del Ciclo Celular/efectos de los fármacos , Línea Celular Tumoral , Complejos de Coordinación/síntesis química , Complejos de Coordinación/toxicidad , Cimenos , Femenino , Humanos , Microscopía Fluorescente , Mitocondrias/metabolismo , Monoterpenos/química , Neoplasias Ováricas/metabolismo , Neoplasias Ováricas/patología , Especies Reactivas de Oxígeno/metabolismo , Sincrotrones
13.
Angew Chem Int Ed Engl ; 56(4): 1017-1020, 2017 01 19.
Artículo en Inglés | MEDLINE | ID: mdl-28000997

RESUMEN

The family of iodido OsII arene phenylazopyridine complexes [Os(η6 -p-cym)(5-R1 -pyridylazo-4-R2 -phenyl))I]+ (where p-cym=para-cymene) exhibit potent sub-micromolar antiproliferative activity towards human cancer cells and are active in vivo. Their chemical behavior is distinct from that of cisplatin: they do not readily hydrolyze, nor bind to DNA bases. We report here a mechanism by which they are activated in cancer cells, involving release of the I- ligand in the presence of glutathione (GSH). The X-ray crystal structures of two active complexes are reported, 1-I (R1 =OEt, R2 =H) and 2-I (R1 =H, R2 =NMe2 ). They were labelled with the radionuclide 131 I (ß- /γ emitter, t1/2 8.02 d), and their activity in MCF-7 human breast cancer cells was studied. 1-[131 I] and 2-[131 I] exhibit good stability in both phosphate-buffered saline and blood serum. In contrast, once taken up by MCF-7 cells, the iodide ligand is rapidly pumped out. Intriguingly, GSH catalyzes their hydrolysis. The resulting hydroxido complexes can form thiolato and sulfenato adducts with GSH, and react with H2 O2 generating hydroxyl radicals. These findings shed new light on the mechanism of action of these organo-osmium complexes.


Asunto(s)
Antineoplásicos/farmacología , Compuestos Organometálicos/farmacología , Osmio/farmacología , Antineoplásicos/síntesis química , Antineoplásicos/química , Línea Celular Tumoral , Proliferación Celular/efectos de los fármacos , Fraccionamiento de la Dosis de Radiación , Ensayos de Selección de Medicamentos Antitumorales , Humanos , Células MCF-7 , Modelos Moleculares , Conformación Molecular , Compuestos Organometálicos/síntesis química , Compuestos Organometálicos/química , Osmio/química , Relación Estructura-Actividad
14.
Chemistry ; 21(22): 8043-6, 2015 May 26.
Artículo en Inglés | MEDLINE | ID: mdl-25853228

RESUMEN

Asymmetric transfer hydrogenation (ATH) is an important process in organic synthesis for which the Noyori-type Ru(II) catalysts [(arene)Ru(Tsdiamine)] are now well established and widely used. We now demonstrate for the first time the catalytic activity of the osmium analogues. X-ray crystal structures of the 16-electron Os(II) catalysts are almost identical to those of Ru(II). Intriguingly the precursor complex was isolated as a dichlorido complex with a monodentate amine ligand. The Os(II) catalysts are readily synthesised (within 1 h) and exhibit excellent enantioselectivity in ATH reactions of ketones.

15.
ACS Nano ; 2023 Jan 05.
Artículo en Inglés | MEDLINE | ID: mdl-36602983

RESUMEN

Nanoparticles (NPs) and other engineered nanomaterials have great potential as nanodrugs or nanomedical devices for biomedical applications. However, the adsorption of proteins in blood circulation or similar physiological fluids can significantly alter the surface properties and therapeutic response induced by most nanomaterials. For example, interaction with proteins can change the bloodstream circulation time and availability of therapeutic NPs or hinder the accumulation in their desired target organs. Proteins can also trigger or prevent agglomeration. By combining experimental and computational approaches, we have developed NPs carrying polyethylene glycol (PEG) polymeric coatings that mimic the surface charge distribution of proteins typically found in blood, which are known to show low aggregation under normal blood conditions. Here, we show that NPs with coatings based on apoferritin or human serum albumin display better antifouling properties and weaker protein interaction compared to similar NPs carrying conventional PEG polymeric coatings.

16.
ACS Nano ; 17(14): 13811-13825, 2023 07 25.
Artículo en Inglés | MEDLINE | ID: mdl-37399106

RESUMEN

Atherosclerosis is a complex disease that can lead to life-threatening events, such as myocardial infarction and ischemic stroke. Despite the severity of this disease, diagnosing plaque vulnerability remains challenging due to the lack of effective diagnostic tools. Conventional diagnostic protocols lack specificity and fail to predict the type of atherosclerotic lesion and the risk of plaque rupture. To address this issue, technologies are emerging, such as noninvasive medical imaging of atherosclerotic plaque with customized nanotechnological solutions. Modulating the biological interactions and contrast of nanoparticles in various imaging techniques, including magnetic resonance imaging, is possible through the careful design of their physicochemical properties. However, few examples of comparative studies between nanoparticles targeting different hallmarks of atherosclerosis exist to provide information about the plaque development stage. Our work demonstrates that Gd (III)-doped amorphous calcium carbonate nanoparticles are an effective tool for these comparative studies due to their high magnetic resonance contrast and physicochemical properties. In an animal model of atherosclerosis, we compare the imaging performance of three types of nanoparticles: bare amorphous calcium carbonate and those functionalized with the ligands alendronate (for microcalcification targeting) and trimannose (for inflammation targeting). Our study provides useful insights into ligand-mediated targeted imaging of atherosclerosis through a combination of in vivo imaging, ex vivo tissue analysis, and in vitro targeting experiments.


Asunto(s)
Aterosclerosis , Nanopartículas , Placa Aterosclerótica , Animales , Placa Aterosclerótica/diagnóstico por imagen , Placa Aterosclerótica/patología , Aterosclerosis/diagnóstico por imagen , Aterosclerosis/tratamiento farmacológico , Imagen por Resonancia Magnética/métodos , Nanopartículas/química
17.
ACS Nano ; 16(8): 12941-12951, 2022 08 23.
Artículo en Inglés | MEDLINE | ID: mdl-35938921

RESUMEN

Matricaria chamomilla flowers were incubated with gold nanoparticles of different sizes ranging from 1.4 to 94 nm. After different incubation times of 6, 12, 24, and 48 h, the gold distribution in the flowers was destructively measured by inductively coupled plasma mass spectrometry (ICP-MS) and non-destructively measured by X-ray fluorescence imaging (XFI) with high lateral resolution. As a control, the biodistribution of iodine ions or iodine-containing organic molecules (iohexol) was determined, in order to demonstrate the feasibility of mapping the distribution of several elements in parallel. The results show a clear size-dependent transport of the nanoparticles. In addition, the surface chemistry also plays a decisive role in disposition. Only the 1.6 nm nanoparticles coated with acetylcysteine could be efficiently transported through the stem of the flowers into the petals. In this case, almost 80% of the nanoparticles which were found within each flower were located in the petals. The study also highlights the potential of XFI for in situ recording of in vivo analyte biodistribution.


Asunto(s)
Yodo , Matricaria , Nanopartículas del Metal , Oro/química , Nanopartículas del Metal/química , Distribución Tisular , Rayos X , Ligandos , Espectrometría de Masas , Imagen Óptica , Tamaño de la Partícula
18.
Antioxidants (Basel) ; 11(8)2022 Aug 06.
Artículo en Inglés | MEDLINE | ID: mdl-36009252

RESUMEN

X-ray fluorescence (XRF) imaging is a highly sensitive non-invasive imaging method for detection of small element quantities in objects, from human-sized scales down to single-cell organelles, using various X-ray beam sizes. Our aim was to investigate the cellular uptake and distribution of Q10, a highly conserved coenzyme with antioxidant and bioenergetic properties. Q10 was labeled with iodine (I2-Q10) and individual primary human skin cells were scanned with nano-focused beams. Distribution of I2-Q10 molecules taken up inside the screened individual skin cells was measured, with a clear correlation between individual Q10 uptake and cell size. Experiments revealed that labeling Q10 with iodine causes no artificial side effects as a result of the labeling procedure itself, and thus is a perfect means of investigating bioavailability and distribution of Q10 in cells. In summary, individual cellular Q10 uptake was demonstrated by XRF, opening the path towards Q10 multi-scale tracking for biodistribution studies.

19.
ChemTexts ; 8(1): 9, 2022.
Artículo en Inglés | MEDLINE | ID: mdl-35223376

RESUMEN

Most studies about the interaction of nanoparticles (NPs) with cells have focused on how the physicochemical properties of NPs will influence their uptake by cells. However, much less is known about their potential excretion from cells. However, to control and manipulate the number of NPs in a cell, both cellular uptake and excretion must be studied quantitatively. Monitoring the intracellular and extracellular amount of NPs over time (after residual noninternalized NPs have been removed) enables one to disentangle the influences of cell proliferation and exocytosis, the major pathways for the reduction of NPs per cell. Proliferation depends on the type of cells, while exocytosis depends in addition on properties of the NPs, such as their size. Examples are given herein on the role of these two different processes for different cells and NPs.

20.
Chem Sci ; 13(1): 59-67, 2021 Dec 22.
Artículo en Inglés | MEDLINE | ID: mdl-35059151

RESUMEN

Catalysis-based approaches for the activation of anticancer agents hold considerable promise. These principally rely on the use of metal catalysts capable of deprotecting inactive precursors of organic drugs or transforming key biomolecules available in the cellular environment. Nevertheless, the efficiency of most of the schemes described so far is rather low, limiting the benefits of catalytic amplification as strategy for controlling the therapeutic effects of anticancer compounds. In the work presented here, we show that flavin reactivity within a hydrogel matrix provides a viable solution for the efficient catalytic activation and delivery of cisplatin, a worldwide clinically-approved inorganic chemotherapy agent. This is achieved by ionically adsorbing a flavin catalyst and a Pt(iv) prodrug as substrate into porous amino-functionalized agarose beads. The hydrogel chassis supplies high local concentrations of electron donating groups/molecules in the surrounding of the catalyst, ultimately boosting substrate conversion rates (TOF >200 min-1) and enabling controlled liberation of the drug by light or chemical stimuli. Overall, this approach can afford platforms for the efficient delivery of platinum drugs as demonstrated herein by using a transdermal diffusion model simulating the human skin.

SELECCIÓN DE REFERENCIAS
DETALLE DE LA BÚSQUEDA