Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 9 de 9
Filtrar
1.
RNA ; 26(11): 1557-1574, 2020 11.
Artículo en Inglés | MEDLINE | ID: mdl-32669294

RESUMEN

RNA helicases catalyze the ATP-dependent destabilization of RNA duplexes. DEAD-box helicases share a helicase core that mediates ATP binding and hydrolysis, RNA binding and unwinding. Most members of this family contain domains flanking the core that can confer RNA substrate specificity and guide the helicase to a specific RNA. However, the in vivo RNA substrates of most helicases are currently not defined. The DEAD-box helicase Hera from Thermus thermophilus contains a helicase core, followed by a dimerization domain and an RNA binding domain that folds into an RNA recognition motif (RRM). The RRM mediates high affinity binding to an RNA hairpin, and an adjacent duplex is then unwound by the helicase core. Hera is a cold-shock protein, and has been suggested to act as an RNA chaperone under cold-shock conditions. Using crosslinking immunoprecipitation of Hera/RNA complexes and sequencing, we show that Hera binds to a large fraction of T. thermophilus RNAs under normal-growth and cold-shock conditions without a strong sequence preference, in agreement with a structure-specific recognition of RNAs and a general function in RNA metabolism. Under cold-shock conditions, Hera is recruited to RNAs with high propensities to form stable secondary structures. We show that selected RNAs identified, including a set of tRNAs, bind to Hera in vitro, and activate the Hera helicase core. Gene ontology analysis reveals an enrichment of genes related to translation, including mRNAs of ribosomal proteins, tRNAs, tRNA ligases, and tRNA-modifying enzymes, consistent with a key role of Hera in ribosome and tRNA metabolism.


Asunto(s)
ARN Helicasas DEAD-box/química , ARN Helicasas DEAD-box/metabolismo , ARN de Transferencia/química , ARN de Transferencia/metabolismo , Thermus thermophilus/crecimiento & desarrollo , Secuencias de Aminoácidos , Proteínas Bacterianas/química , Proteínas Bacterianas/metabolismo , Sitios de Unión , Respuesta al Choque por Frío , Modelos Moleculares , Unión Proteica , Dominios Proteicos , Multimerización de Proteína , Estructura Secundaria de Proteína , ARN Bacteriano/química , ARN Bacteriano/metabolismo , Thermus thermophilus/enzimología , Thermus thermophilus/genética
2.
Nucleic Acids Res ; 46(22): 11910-11926, 2018 12 14.
Artículo en Inglés | MEDLINE | ID: mdl-30380104

RESUMEN

The principal route for dissemination of antibiotic resistance genes is conjugation by which a conjugative DNA element is transferred from a donor to a recipient cell. Conjugative elements contain genes that are important for their establishment in the new host, for instance by counteracting the host defense mechanisms acting against incoming foreign DNA. Little is known about these establishment genes and how they are regulated. Here, we deciphered the regulation mechanism of possible establishment genes of plasmid p576 from the Gram-positive bacterium Bacillus pumilus. Unlike the ssDNA promoters described for some conjugative plasmids, the four promoters of these p576 genes are repressed by a repressor protein, which we named Reg576. Reg576 also regulates its own expression. After transfer of the DNA, these genes are de-repressed for a period of time until sufficient Reg576 is synthesized to repress the promoters again. Complementary in vivo and in vitro analyses showed that different operator configurations in the promoter regions of these genes lead to different responses to Reg576. Each operator is bound with extreme cooperativity by two Reg576-dimers. The X-ray structure revealed that Reg576 has a Ribbon-Helix-Helix core and provided important insights into the high cooperativity of DNA recognition.


Asunto(s)
Bacillus pumilus/genética , Proteínas Bacterianas/química , ADN/química , Transferencia de Gen Horizontal , Plásmidos/química , Proteínas Represoras/química , Bacillus pumilus/metabolismo , Proteínas Bacterianas/genética , Proteínas Bacterianas/metabolismo , Secuencia de Bases , Sitios de Unión , Clonación Molecular , Conjugación Genética , ADN/genética , ADN/metabolismo , Farmacorresistencia Bacteriana Múltiple/genética , Escherichia coli/genética , Escherichia coli/metabolismo , Expresión Génica , Regulación Bacteriana de la Expresión Génica , Vectores Genéticos/química , Vectores Genéticos/metabolismo , Conformación de Ácido Nucleico , Plásmidos/metabolismo , Regiones Promotoras Genéticas , Unión Proteica , Conformación Proteica en Hélice alfa , Conformación Proteica en Lámina beta , Dominios y Motivos de Interacción de Proteínas , Proteínas Recombinantes/química , Proteínas Recombinantes/genética , Proteínas Recombinantes/metabolismo , Proteínas Represoras/genética , Proteínas Represoras/metabolismo , Shigella flexneri/genética , Shigella flexneri/metabolismo
4.
Environ Microbiol ; 20(10): 3484-3503, 2018 10.
Artículo en Inglés | MEDLINE | ID: mdl-29708644

RESUMEN

Metabolically versatile bacteria use catabolite repression control to select their preferred carbon sources, thus optimizing carbon metabolism. In pseudomonads, this occurs through the combined action of the proteins Hfq and Crc, which form stable tripartite complexes at target mRNAs, inhibiting their translation. The activity of Hfq/Crc is antagonised by small RNAs of the CrcZ family, the amounts of which vary according to carbon availability. The present work examines the role of Pseudomonas putida Hfq protein under conditions of low-level catabolite repression, in which Crc protein would have a minor role since it is sequestered by CrcZ/CrcY. The results suggest that, under these conditions, Hfq remains operative and plays an important role in iron homeostasis. In this scenario, Crc appears to participate indirectly by helping CrcZ/CrcY to control the amount of free Hfq in the cell. Iron homeostasis in pseudomonads relies on regulatory elements such as the Fur protein, the PrrF1-F2 sRNAs, and several extracytoplasmic sigma factors. Our results show that the absence of Hfq is paralleled by a reduction in PrrF1-F2 small RNAs. Hfq thus provides a regulatory link between iron and carbon metabolism, coordinating the iron supply to meet the needs of the enzymes operational under particular nutritional regimes.


Asunto(s)
Proteínas Bacterianas/metabolismo , Hierro/metabolismo , Pseudomonas putida/metabolismo , Proteínas Represoras/metabolismo , Carbono/metabolismo , Represión Catabólica , Homeostasis , Proteína de Factor 1 del Huésped/metabolismo , Pseudomonas putida/genética , ARN Bacteriano/metabolismo
5.
RNA ; 22(12): 1902-1917, 2016 12.
Artículo en Inglés | MEDLINE | ID: mdl-27777366

RESUMEN

In Pseudomonas putida, the Hfq and Crc proteins regulate the expression of many genes in response to nutritional and environmental cues, by binding to mRNAs that bear specific target motifs and inhibiting their translation. The effect of these two proteins is antagonized by the CrcZ and CrcY small RNAs (sRNAs), the levels of which vary greatly according to growth conditions. The crcZ and crcY genes are transcribed from promoters PcrcZ and PcrcY, respectively, a process that relies on the CbrB transcriptional activator and the RpoN σ factor. Here we show that crcZ can also be transcribed from the promoter of the immediate upstream gene, cbrB, a weak constitutive promoter. The cbrB-crcZ transcript was processed to render a sRNA very similar in size to the CrcZ produced from promoter PcrcZ The processed sRNA, termed CrcZ*, was able to antagonize Hfq/Crc because, when provided in trans, it relieved the deregulated Hfq/Crc-dependent hyperrepressing phenotype of a ΔcrcZΔcrcY strain. CrcZ* may help in attaining basal levels of CrcZ/CrcZ* that are sufficient to protect the cell from an excessive Hfq/Crc-dependent repression. Since a functional sRNA can be produced from PcrcZ, an inducible strong promoter, or by cleavage of the cbrB-crcZ mRNA, crcZ can be considered a 3'-untranslated region of the cbrB-crcZ mRNA. In the absence of Hfq, the processed form of CrcZ was not observed. In addition, we show that Crc and Hfq increase CrcZ stability, which supports the idea that these proteins can form a complex with CrcZ and protect it from degradation by RNases.


Asunto(s)
Proteínas Bacterianas/genética , Pseudomonas putida/genética , Procesamiento Postranscripcional del ARN , ARN Bacteriano/metabolismo , Transcripción Genética , Regiones Promotoras Genéticas , ARN Mensajero/genética
6.
mBio ; 15(3): e0019624, 2024 Mar 13.
Artículo en Inglés | MEDLINE | ID: mdl-38391196

RESUMEN

Treatments with antibiotic combinations are becoming increasingly important even though the supposed clinical benefits of combinations are, in many cases, unclear. Here, we systematically examined how several clinically used antibiotics interact and affect the antimicrobial efficacy against five especially problematic Gram-negative pathogens. A total of 232 bacterial isolates were tested against different pairwise antibiotic combinations spanning five classes, and the ability of all combinations in inhibiting growth was quantified. Descriptive statistics, principal component analysis (PCA), and Spearman's rank correlation matrix were used to determine the correlations between the different combinations on interaction outcome. Several important conclusions can be drawn from the 696 examined interactions. Firstly, within a species, the interactions are in general conserved but can be isolate-specific for a given antibiotic combination and can range from antagonistic to synergistic. Secondly, additive and antagonistic interactions are the most common observed across species and antibiotics, with 87.1% of isolate-antibiotic combinations being additive, 11.6% antagonistic, and only 0.3% showing synergy. These findings suggest that to achieve the highest precision and efficacy of combination therapy, not only isolate-specific interaction profiling ought to be routinely performed, in particular to avoid using drug combinations that show antagonistic interaction and an expected associated reduction in efficacy, but also discovering rare and potentially valuable synergistic interactions.IMPORTANCEAntibiotic combinations are often used to treat bacterial infections, which aim to increase treatment efficacy and reduce resistance evolution. Typically, it is assumed that one specific antibiotic combination has the same effect on different isolates of the same species, i.e., the interaction is conserved. Here, we tested this idea by examining how several clinically used antibiotics interact and affect the antimicrobial efficacy against several bacterial pathogens. Our results show that, even though within a species the interactions are often conserved, there are also isolate-specific differences for a given antibiotic combination that can range from antagonistic to synergistic. These findings suggest that isolate-specific interaction profiling ought to be performed in clinical microbiology routine to avoid using antagonistic drug combinations that might reduce treatment efficacy.


Asunto(s)
Antibacterianos , Infecciones Bacterianas , Humanos , Antibacterianos/farmacología , Sinergismo Farmacológico , Infecciones Bacterianas/tratamiento farmacológico , Combinación de Medicamentos , Bacterias Gramnegativas , Pruebas de Sensibilidad Microbiana
7.
Environ Microbiol Rep ; 16(3): e13269, 2024 Jun.
Artículo en Inglés | MEDLINE | ID: mdl-38822640

RESUMEN

Recombinational repair is an important mechanism that allows DNA replication to overcome damaged templates, so the DNA is duplicated timely and correctly. The RecFOR pathway is one of the common ways to load RecA, while the RuvABC complex operates in the resolution of DNA intermediates. We have generated deletions of recO, recR and ruvB genes in Thermus thermophilus, while a recF null mutant could not be obtained. The recO deletion was in all cases accompanied by spontaneous loss of function mutations in addA or addB genes, which encode a helicase-exonuclease also key for recombination. The mutants were moderately affected in viability and chromosome segregation. When we generated these mutations in a Δppol/addAB strain, we observed that the transformation efficiency was maintained at the typical level of Δppol/addAB, which is 100-fold higher than that of the wild type. Most mutants showed increased filamentation phenotypes, especially ruvB, which also had DNA repair defects. These results suggest that in T. thermophilus (i) the components of the RecFOR pathway have differential roles, (ii) there is an epistatic relationship of the AddAB complex over the RecFOR pathway and (iii) that neither of the two pathways or their combination is strictly required for viability although they are necessary for normal DNA repair and chromosome segregation.


Asunto(s)
Proteínas Bacterianas , ADN Helicasas , Thermus thermophilus , Thermus thermophilus/genética , Thermus thermophilus/metabolismo , Proteínas Bacterianas/genética , Proteínas Bacterianas/metabolismo , ADN Helicasas/genética , ADN Helicasas/metabolismo , Reparación del ADN/genética , Eliminación de Gen , Proteínas de Unión al ADN/genética , Proteínas de Unión al ADN/metabolismo , Segregación Cromosómica/genética , ADN Bacteriano/genética , Mutación
8.
Int Microbiol ; 22(1): 19-28, 2019 Mar.
Artículo en Inglés | MEDLINE | ID: mdl-30810929

RESUMEN

Denitrifying bacteria carry out nitrate and nitrite respiration inside and outside the cell, respectively. In Thermus thermophilus, nitrate and nitrite transport processes are carried out by major facilitator superfamily (MFS) transporters. The sequence of the nar operon of nitrate-only respiring strains of T. thermophilus includes two tandemly organized MFS transporter genes (narK and narT) of the NarK1 and NarK2 families. Both can function as nitrate/nitrite antiporters, but NarK has been proposed as more specific for nitrate whereas NarT more specific for nitrite. In some nitrate- and nitrite-respiring strains of the same species, a single MFS transporter (NarO) belonging to a different MFS subfamily appears. To analyze the role of this single MFS in the same genetic context, we transferred the two types of nar operon to the aerobic strain HB27, and further included in both of them the ability to respire nitrite. The new denitrifying strains HB27dn, with two MFS, and HB27dp, with a single one, were used to isolate mutants devoid of transporters. Through in trans complementation experiments, we demonstrate that the NarO single MFS works efficiently in the transport of both nitrate and nitrite.


Asunto(s)
Desnitrificación , Proteínas de Transporte de Membrana/metabolismo , Nitratos/metabolismo , Nitritos/metabolismo , Thermus thermophilus/enzimología , Eliminación de Gen , Expresión Génica , Orden Génico , Proteínas de Transporte de Membrana/genética , Operón , Proteínas Recombinantes/metabolismo , Thermus thermophilus/genética
9.
Int. microbiol ; 22(1): 19-28, mar. 2019. graf, tab
Artículo en Inglés | IBECS (España) | ID: ibc-184810

RESUMEN

Denitrifying bacteria carry out nitrate and nitrite respiration inside and outside the cell, respectively. In Thermus thermophilus, nitrate and nitrite transport processes are carried out by major facilitator superfamily (MFS) transporters. The sequence of the nar operon of nitrate-only respiring strains of T. thermophilus includes two tandemly organized MFS transporter genes (narK and narT) of the NarK1 and NarK2 families. Both can function as nitrate/nitrite antiporters, but NarK has been proposed as more specific for nitrate whereas NarT more specific for nitrite. In some nitrate- and nitrite-respiring strains of the same species, a single MFS transporter (NarO) belonging to a different MFS subfamily appears. To analyze the role of this single MFS in the same genetic context, we transferred the two types of nar operon to the aerobic strain HB27, and further included in both of them the ability to respire nitrite. The new denitrifying strains HB27dn, with two MFS, and HB27dp, with a single one, were used to isolate mutants devoid of transporters. Through in trans complementation experiments, we demonstrate that the NarO single MFS works efficiently in the transport of both nitrate and nitrite


No disponible


Asunto(s)
Nitratos/metabolismo , Desnitrificación , Proteínas de Transporte de Membrana/metabolismo , Nitritos/metabolismo , Thermus thermophilus/enzimología , Thermus thermophilus/genética , Eliminación de Gen , Expresión Génica , Orden Génico , Proteínas de Transporte de Membrana/genética , Operón , Proteínas Recombinantes/metabolismo
SELECCIÓN DE REFERENCIAS
DETALLE DE LA BÚSQUEDA