Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 8 de 8
Filtrar
1.
Neurobiol Dis ; 55: 140-51, 2013 Jul.
Artículo en Inglés | MEDLINE | ID: mdl-23542510

RESUMEN

GDAP1 is an outer mitochondrial membrane protein that acts as a regulator of mitochondrial dynamics. Mutations of the GDAP1 gene cause Charcot-Marie-Tooth (CMT) neuropathy. We show that GDAP1 interacts with the vesicle-organelle trafficking proteins RAB6B and caytaxin, which suggests that GDAP1 may participate in the mitochondrial movement within the cell. GDAP1 silencing in the SH-SY5Y cell line induces abnormal distribution of the mitochondrial network, reduces the contact between mitochondria and endoplasmic reticulum (ER) and alters the mobilization of mitochondria towards plasma membrane upon depletion of ER-Ca(2+) stores. GDAP1 silencing does not affect mitochondrial Ca(2+) uptake, ER-Ca(2+), or Ca(2+) flow from ER to mitochondria, but reduces Ca(2+) inflow through store-operated Ca(2+) entry (SOCE) following mobilization of ER-Ca(2+) and SOCE-driven Ca(2+) entry in mitochondria. Our studies suggest that the pathophysiology of GDAP1-related CMT neuropathies may be associated with abnormal distribution and movement of mitochondria throughout cytoskeleton towards the ER and subplasmalemmal microdomains, resulting in a decrease in SOCE activity and impaired SOCE-driven Ca(2+) uptake in mitochondria.


Asunto(s)
Señalización del Calcio/genética , Calcio/metabolismo , Homeostasis/fisiología , Mitocondrias/metabolismo , Proteínas del Tejido Nervioso/metabolismo , Interferencia de ARN/fisiología , Adenosina Trifosfato/farmacología , Señalización del Calcio/efectos de los fármacos , Línea Celular Transformada , Quelantes/farmacología , Proteína Coatómero/metabolismo , Citoesqueleto/metabolismo , Ácido Egtácico/farmacología , Retículo Endoplásmico/efectos de los fármacos , Retículo Endoplásmico/metabolismo , Retículo Endoplásmico/microbiología , Inhibidores Enzimáticos/farmacología , Guanosina 5'-O-(3-Tiotrifosfato)/farmacología , Homeostasis/efectos de los fármacos , Homeostasis/genética , Humanos , Glicoproteínas de Membrana/metabolismo , Proteínas de Transporte de Membrana/metabolismo , Microscopía Electrónica de Transmisión , Mitocondrias/efectos de los fármacos , Mitocondrias/genética , Mitocondrias/ultraestructura , Proteínas del Complejo de Importación de Proteínas Precursoras Mitocondriales , Proteínas Mitocondriales/metabolismo , Mutación Missense/genética , Proteínas del Tejido Nervioso/genética , Transporte de Proteínas/genética , Receptores de Superficie Celular/metabolismo , Transfección , Proteínas de Unión al GTP rab/metabolismo
2.
J Biol Chem ; 286(42): 36777-86, 2011 Oct 21.
Artículo en Inglés | MEDLINE | ID: mdl-21890626

RESUMEN

Mutations in the GDAP1 gene are responsible of the Charcot-Marie-Tooth CMT4A, ARCMT2K, and CMT2K variants. GDAP1 is a mitochondrial outer membrane protein that has been related to the fission pathway of the mitochondrial network dynamics. As mitochondrial dynamics is a conserved process, we reasoned that expressing GDAP1 in Saccharomyces cerevisiae strains defective for genes involved in mitochondrial fission or fusion could increase our knowledge of GDAP1 function. We discovered a consistent relation between Fis1p and the cell cycle because fis1Δ cells showed G(2)/M delay during cell cycle progression. The fis1Δ phenotype, which includes cell cycle delay, was fully rescued by GDAP1. By contrast, clinical missense mutations rescued the fis1Δ phenotype except for the cell cycle delay. In addition, both Fis1p and human GDAP1 interacted with ß-tubulins Tub2p and TUBB, respectively. A defect in the fis1 gene may induce abnormal location of mitochondria during budding mitosis, causing the cell cycle delay at G(2)/M due to its anomalous interaction with microtubules from the mitotic spindle. In the case of neurons harboring defects in GDAP1, the interaction between mitochondria and the microtubule cytoskeleton would be altered, which might affect mitochondrial axonal transport and movement within the cell and may explain the pathophysiology of the GDAP1-related Charcot-Marie-Tooth disease.


Asunto(s)
División Celular , Fase G2 , Mitocondrias/metabolismo , Proteínas Mitocondriales/metabolismo , Proteínas del Tejido Nervioso/metabolismo , Proteínas de Saccharomyces cerevisiae/metabolismo , Enfermedad de Charcot-Marie-Tooth/genética , Enfermedad de Charcot-Marie-Tooth/metabolismo , Prueba de Complementación Genética , Células HeLa , Humanos , Microtúbulos/genética , Microtúbulos/metabolismo , Mitocondrias/genética , Proteínas Mitocondriales/genética , Mutación Missense , Proteínas del Tejido Nervioso/genética , Saccharomyces cerevisiae , Proteínas de Saccharomyces cerevisiae/genética , Tubulina (Proteína)/genética , Tubulina (Proteína)/metabolismo
3.
Hum Mol Genet ; 17(5): 667-78, 2008 Mar 01.
Artículo en Inglés | MEDLINE | ID: mdl-18029386

RESUMEN

Lafora progressive myoclonus epilepsy (LD) is a fatal autosomal recessive neurodegenerative disorder characterized by the presence of glycogen-like intracellular inclusions called Lafora bodies. LD is caused by mutations in two genes, EPM2A and EPM2B, encoding respectively laforin, a dual-specificity protein phosphatase, and malin, an E3 ubiquitin ligase. Previously, we and others have suggested that the interactions between laforin and PTG (a regulatory subunit of type 1 protein phosphatase) and between laforin and malin are critical in the pathogenesis of LD. Here, we show that the laforin-malin complex downregulates PTG-induced glycogen synthesis in FTO2B hepatoma cells through a mechanism involving ubiquitination and degradation of PTG. Furthermore, we demonstrate that the interaction between laforin and malin is a regulated process that is modulated by the AMP-activated protein kinase (AMPK). These findings provide further insights into the critical role of the laforin-malin complex in the control of glycogen metabolism and unravel a novel link between the energy sensor AMPK and glycogen metabolism. These data advance our understanding of the functional role of laforin and malin, which hopefully will facilitate the development of appropriate LD therapies.


Asunto(s)
Proteínas Portadoras/genética , Glucógeno/biosíntesis , Complejos Multienzimáticos/metabolismo , Proteínas Serina-Treonina Quinasas/metabolismo , Proteínas Tirosina Fosfatasas no Receptoras/genética , Proteínas Quinasas Activadas por AMP , Adenoviridae/genética , Secuencia de Aminoácidos , Animales , Sitios de Unión , Proteínas Portadoras/metabolismo , Línea Celular , Línea Celular Tumoral , Fenómenos Fisiológicos Celulares , Escherichia coli/genética , Glucógeno/análisis , Proteínas Fluorescentes Verdes/metabolismo , Humanos , Riñón/citología , Modelos Biológicos , Datos de Secuencia Molecular , Mutación , Fosforilación , Unión Proteica , Estructura Terciaria de Proteína , Proteínas Tirosina Fosfatasas no Receptoras/química , Proteínas Tirosina Fosfatasas no Receptoras/metabolismo , Ratas , Proteínas Recombinantes de Fusión/química , Proteínas Recombinantes de Fusión/metabolismo , Estadística como Asunto , Transfección , Técnicas del Sistema de Dos Híbridos , Ubiquitina-Proteína Ligasas , Ubiquitinación
4.
Adv Exp Med Biol ; 652: 129-37, 2009.
Artículo en Inglés | MEDLINE | ID: mdl-20225023

RESUMEN

Mitochondrial dysfunction plays a relevant role in the pathogenesis of neurological and neuromuscular diseases. Mitochondria may be involved as a primary defect of either the mtDNA or nuclear genome encoded subunits of the respiratory chain. These organelles have also been directly involved in the pathogenesis of Mendelian neurodegenerative disorders caused by mutations in nuclear-encoded proteins targeted to mitochondria, such as Friedreich ataxia, hereditary spastic paraplegia, or some monogenic forms of Parkinson disease. In addition, mitochondria also participate in the pathogenic mechanisms affecting neurodegenerative disorders such Huntington disease or amyotrophic lateral sclerosis. Cell death in neurodegeneration associated with neurological diseases usually occurs by apoptosis being the most common route the intrinsic mitochondria pathway. Along with regulation of apoptosis, mitochondria also modulate cell pathogenesis by means of energy production, reactive oxygen species (ROS) generation, and calcium buffering. Mitochondria form dynamic tubular networks that continually change their shape and move throughout the cell. Here we review the critical role of mitochondria in monogenic neuromuscular disorders, especially inherited peripheral neuropathies caused by abnormal mitochondrial network dynamics. In yeast, at least three proteins are required for mitochondrial fusion, Fzo1, Ugo1 and Mgm1. The human counterparts of Fzo1p and Mgm1p, MFN1/MFN2 and OPA1 respectively, are related to human disease. Mutations in the MFN2 gene cause the most frequent form of autosomal dominant axonal Charcot-Marie-Tooth disease, CMT2A. Mutations in OPA1 cause autosomal dominant optic atrophy (ADOA). For the opposite process of mitochondrial fission, four proteins are at least involved in yeast. Very recently a mutation in the DRP1 gene (the human homologue of yeast Dnm1) has been reported in an infant with a syndrome with encephalopathy, optic atrophy and lactic acidosis. GDAP1 has been recently related to the mitochondrial fission in mammalian cells and, interestingly, mutations in the GDAP1 gene are the cause of the most common form of autosomal recessive CMT, either axonal or demyelinating. These and other disorders are the most recent instances of disease related with mitochondrial abnormal motility, fusion and fission. We propose that the pathomechanisms underlying these disorders also include a complex relationship between mitochondrial dynamics and transport across the axon.


Asunto(s)
Enfermedad de Charcot-Marie-Tooth/etiología , Enfermedad de Charcot-Marie-Tooth/metabolismo , Mitocondrias/metabolismo , Enfermedad de Charcot-Marie-Tooth/patología , Humanos , Degeneración Nerviosa/metabolismo , Degeneración Nerviosa/patología
5.
FEBS Lett ; 524(1-3): 79-86, 2002 Jul 31.
Artículo en Inglés | MEDLINE | ID: mdl-12135745

RESUMEN

The cmk2 gene of Schizosaccharomyces pombe encodes a 504 amino acid protein kinase with sequence homology with the calmodulin-dependent protein kinase family. The cmk2(+) gene is not essential for cell viability but overexpression of cmk2(+) blocks the cell cycle at G2 phase and this inhibition is cdc2-dependent. The Cmk2 is a cytoplasmic protein expressed in a cell cycle-dependent manner, peaking at the G1/S boundary. Overexpression of Cmk2 suppresses fission yeast DNA replication checkpoint defects but not DNA damage checkpoint defects, suggesting that the G2 cell cycle arrest mediated by high levels of Cmk2 provides sufficient time to correct DNA replication alterations.


Asunto(s)
Proteínas Serina-Treonina Quinasas/genética , Schizosaccharomyces/enzimología , Secuencia de Aminoácidos , Secuencia de Bases , Daño del ADN , Cartilla de ADN , Replicación del ADN , Fase G2 , Genes Fúngicos , Microscopía Fluorescente , Datos de Secuencia Molecular , Sistemas de Lectura Abierta , Fosforilación , Proteínas Serina-Treonina Quinasas/química , Proteínas Serina-Treonina Quinasas/metabolismo , Schizosaccharomyces/citología , Schizosaccharomyces/genética , Homología de Secuencia de Aminoácido , Fracciones Subcelulares/metabolismo , Tirosina/metabolismo
6.
J Cell Mol Med ; 12(2): 679-89, 2008 Apr.
Artículo en Inglés | MEDLINE | ID: mdl-18021315

RESUMEN

Mutations in the mitochondrial protein GDAP1 are the cause of Charcot-Marie-Tooth type 4A disease (CMT4A), a severe form of peripheral neuropathy associated with either demyelinating, axonal or intermediate phenotypes. GDAP1 is located in the outer mitochondrial membrane and it seems that may be related with the mitochondrial network dynamics. We are interested to define cell expression in the nervous system and the effect of mutations in mitochondrial morphology and pathogenesis of the disease. We investigated GDAP1 expression in the nervous system and dorsal root ganglia (DRG) neuron cultures. GDAP1 is expressed in motor and sensory neurons of the spinal cord and other large neurons such as cerebellar Purkinje neurons, hippocampal pyramidal neurons, mitral neurons of the olfactory bulb and cortical pyramidal neurons. The lack of GDAP1 staining in the white matter and nerve roots suggested that glial cells do not express GDAP1. In DRG cultures satellite cells and Schwann cells were GDAP1-negative. Overexpression of GDAP1-induced fragmentation of mitochondria suggesting a role of GDAP1 in the fission pathway of the mitochondrial dynamics. Missense mutations showed two different patterns: most of them induced mitochondrial fragmentation but the T157P mutation showed an aggregation pattern. Whereas null mutations of GDAP1 should be associated with loss of function of the protein, missense mutations may act through different pathogenic mechanisms including a dominant-negative effect, suggesting that different molecular mechanisms may underlay the pathogenesis of CMT4A.


Asunto(s)
Enfermedad de Charcot-Marie-Tooth/etiología , Expresión Génica , Proteínas del Tejido Nervioso/metabolismo , Sistema Nervioso/citología , Sistema Nervioso/metabolismo , Animales , Animales Recién Nacidos , Células COS , Células Cultivadas , Enfermedad de Charcot-Marie-Tooth/clasificación , Chlorocebus aethiops , Ganglios Espinales/citología , Ganglios Espinales/metabolismo , Células HeLa , Humanos , Inmunohistoquímica , Interneuronas/metabolismo , Ratones , Neuronas Motoras/metabolismo , Mutación Missense , Proteínas del Tejido Nervioso/genética , Neuronas Aferentes/metabolismo , Células de Purkinje/metabolismo , Células Piramidales/metabolismo , Ratas , Médula Espinal/metabolismo
7.
Mol Cell ; 17(1): 49-59, 2005 Jan 07.
Artículo en Inglés | MEDLINE | ID: mdl-15629716

RESUMEN

The mechanisms by which environmental stress regulates cell cycle progression are poorly understood. In fission yeast, we show that Srk1 kinase, which associates with the stress-activated p38/Sty1 MAP kinase, regulates the onset of mitosis by inhibiting the Cdc25 phosphatase. Srk1 is periodically active in G2, and its overexpression causes cell cycle arrest in late G2 phase, whereas cells lacking srk1 enter mitosis prematurely. We find that Srk1 interacts with and phosphorylates Cdc25 at the same sites phosphorylated by the Chk1 and Cds1 (Chk2) kinases and that this phosphorylation is necessary for Srk1 to delay mitotic entry. Phosphorylation by Srk1 causes Cdc25 to bind to Rad24, a 14-3-3 protein family member, and accumulation of Cdc25 in the cytoplasm. However, Srk1 does not regulate Cdc25 in response to replication arrest or DNA damage but, rather, during a normal cell cycle and in response to nongenotoxic environmental stress.


Asunto(s)
Proteínas Quinasas Activadas por Mitógenos/metabolismo , Schizosaccharomyces/enzimología , Fosfatasas cdc25/antagonistas & inhibidores , Proteína Quinasa CDC2/química , Proteína Quinasa CDC2/genética , Proteína Quinasa CDC2/metabolismo , Ciclo Celular , Proteínas de Ciclo Celular/genética , Proteínas de Ciclo Celular/metabolismo , Citoplasma/metabolismo , Daño del ADN , Replicación del ADN , Proteínas Fúngicas , Genes Fúngicos , Péptidos y Proteínas de Señalización Intracelular , Proteínas Quinasas Activadas por Mitógenos/química , Proteínas Quinasas Activadas por Mitógenos/genética , Mitosis , Fosforilación , Estructura Terciaria de Proteína , Proteínas Recombinantes de Fusión/química , Proteínas Recombinantes de Fusión/genética , Proteínas Recombinantes de Fusión/metabolismo , Schizosaccharomyces/citología , Schizosaccharomyces/genética , Proteínas de Schizosaccharomyces pombe/química , Proteínas de Schizosaccharomyces pombe/genética , Proteínas de Schizosaccharomyces pombe/metabolismo , Tirosina/química , Fosfatasas cdc25/química , Fosfatasas cdc25/genética , Fosfatasas cdc25/metabolismo
8.
J Biol Chem ; 277(20): 17722-7, 2002 May 17.
Artículo en Inglés | MEDLINE | ID: mdl-11886858

RESUMEN

Cmk2, a fission yeast Ser/Thr protein kinase homologous to mammalian calmodulin kinases, is essential for oxidative stress response. Cells lacking cmk2 gene were specifically sensitive to oxidative stress conditions. Upon stress, Cmk2 was phosphorylated in vivo, and this phosphorylation was dependent on the stress-activated MAPK Sty1/Spc1. Co-precipitation assays demonstrated that Cmk2 binds Sty1. Furthermore, in vivo or in vitro activated Sty1 was able to phosphorylate Cmk2, and the phosphorylation occurred at the C-terminal regulatory domain at Thr-411. Cell lethality caused by overexpression of Wis1 MAPK kinase was abolished by deletion of cmk2 or by mutation of Thr-411 of Cmk2. Taken together, our data suggest that Cmk2 acts downstream of Sty1 and is an essential kinase for oxidative stress responses.


Asunto(s)
Estrés Oxidativo , Proteínas Serina-Treonina Quinasas/fisiología , Proteínas de Saccharomyces cerevisiae , Proteínas de Schizosaccharomyces pombe , Schizosaccharomyces/fisiología , Secuencia de Aminoácidos , Quinasas de Proteína Quinasa Activadas por Mitógenos/metabolismo , Proteínas Quinasas Activadas por Mitógenos/metabolismo , Datos de Secuencia Molecular , Fosforilación , Mutación Puntual , Proteínas Serina-Treonina Quinasas/química , Proteínas Serina-Treonina Quinasas/genética , Proteínas Serina-Treonina Quinasas/metabolismo , Schizosaccharomyces/enzimología , Homología de Secuencia de Aminoácido
SELECCIÓN DE REFERENCIAS
DETALLE DE LA BÚSQUEDA