Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 11 de 11
Filtrar
1.
Phys Chem Chem Phys ; 26(11): 8734-8747, 2024 Mar 13.
Artículo en Inglés | MEDLINE | ID: mdl-38416412

RESUMEN

Characterization of paramagnetic compounds, in particular regarding the detailed conformation and electronic structure, remains a challenge, and - still today it often relies solely on the use of X-ray crystallography, thus limiting the access to electronic structure information. This is particularly true for lanthanide elements that are often associated with peculiar structural and electronic features in relation to their partially filled f-shell. Here, we develop a methodology based on the combined use of state-of-the-art magnetic resonance spectroscopies (EPR and solid-state NMR) and computational approaches as well as magnetic susceptibility measurements to determine the electronic structure and geometry of a paramagnetic Yb(III) alkyl complex, Yb(III)[CH(SiMe3)2]3, a prototypical example, which contains notable structural features according to X-ray crystallography. Each of these techniques revealed specific information about the geometry and electronic structure of the complex. Taken together, both EPR and NMR, augmented by quantum chemical calculations, provide a detailed and complementary understanding of such paramagnetic compounds. In particular, the EPR and NMR signatures point to the presence of three-centre-two-electron Yb-γ-Me-ß-Si secondary metal-ligand interactions in this otherwise tri-coordinate metal complex, similarly to its diamagnetic Lu analogues. The electronic structure of Yb(III) can be described as a single 4f13 configuration, while an unusually large crystal-field splitting results in a thermally isolated ground Kramers doublet. Furthermore, the computational data indicate that the Yb-carbon bond contains some π-character, reminiscent of the so-called α-H agostic interaction.

2.
J Am Chem Soc ; 145(39): 21502-21513, 2023 Oct 04.
Artículo en Inglés | MEDLINE | ID: mdl-37733021

RESUMEN

The development and optimization of fast battery charging protocols require detailed information regarding lithium speciation inside a battery. Nuclear magnetic resonance (NMR) spectroscopy has the unique capability of identifying the Li phases formed in an anode during Li-ion cell operation and quantifying their relative amounts. In addition, both Li metal films and dendrites are readily detected and quantified. Here, our recently reported parallel-plate resonator radio frequency (RF) probe and the cartridge-type single-layer full cell were used to track the behavior of Si electrodes during cycling and during fast charging. The LixSi compounds formed during electrochemical cycling exhibit an unexpected intrinsic nonequilibrium behavior at both slow and fast rates, evolving toward increasingly disordered local environments. The evolution with time of lithiated phases is nonlinear during both charging and discharging at constant current, unlike the case for pure graphite, and asymmetric between charge and discharge. During charging at rates of 1C, 2C, and 3C, metallic Li in both films and (to a lesser extent) dendritic forms are deposited on the Si anode. Part of the Li metal film formation is reversible, but a fraction remains on the electrode surface as dead Li, while all of the dendritic Li, even though formed in a considerably smaller amount, is entirely irreversible. Such performance-governing properties are critical to the development of fast-charging protocols for lithium-ion batteries (LIBs) and are exceptionally well evaluated and quantified by 7Li magnetic resonance strategies such as those presented here.

3.
Angew Chem Int Ed Engl ; 61(47): e202212471, 2022 Nov 21.
Artículo en Inglés | MEDLINE | ID: mdl-36265124

RESUMEN

The key to increasing the energy density of lithium-ion batteries is to incorporate high contents of extractable Li into the cathode. Unfortunately, this triggers formidable challenges including structural instability and irreversible chemistry under operation. Here, we report a new kind of ultra-high Li compound: Li4+x MoO5 Fx (1≤x≤3) for cathode with an unprecedented level of electrochemically active Li (>3 Li+ per formula), delivering a reversible capacity up to 438 mAh g-1 . Unlike other reported Li-rich cathodes, Li4+x MoO5 Fx presents distinguished structure stability to immunize against irreversible behaviors. Through spectroscopic and electrochemical techniques, we find an anionic redox-dominated charge compensation with negligible oxygen release and voltage decay. Our theoretical analysis reveals a "reductive effect" of high-level fluorination stabilizes the anionic redox by reducing the oxygen ions in pure-Li conditions, enabling a facile, reversible, and high Li-portion cycling.

4.
J Am Chem Soc ; 142(39): 16757-16765, 2020 09 30.
Artículo en Inglés | MEDLINE | ID: mdl-32871082

RESUMEN

Most of our understanding of chemistry derives from atomic-level structures obtained with single-crystal X-ray diffraction. Metal centers in X-ray structures of small organometallic or coordination complexes are often extremely well-defined, with errors in the positions on the order of 10-4-10-5 Å. Determining the metal coordination geometry to high accuracy is essential for understanding metal center reactivity, as even small structural changes can dramatically alter the metal activity. In contrast, the resolution of X-ray structures in proteins is limited typically to the order of 10-1 Å. This resolution is often not sufficient to develop precise structure-activity relations for the metal sites in proteins, because the uncertainty in positions can cover all of the known ranges of bond lengths and bond angles for a given type of metal complex. Here we introduce a new approach that enables the determination of a high-definition structure of the active site of a metalloprotein from a powder sample, by combining magic-angle spinning (MAS) nuclear magnetic resonance (NMR) spectroscopy, tailored radio frequency (RF) irradiation schemes, and computational approaches. This allows us to overcome the "blind sphere" in paramagnetic proteins, and to observe and assign 1H, 13C, and 15N resonances for the ligands directly coordinating the metal center. We illustrate the method by determining the bond lengths in the structure of the CoII coordination sphere at the core of human superoxide dismutase 1 (SOD) with 0.7 pm precision. The coordination geometry of the resulting structure explains the nonreactive nature of the CoII/ZnII centers in these proteins, which allows them to play a purely structural role.


Asunto(s)
Cobalto/química , Complejos de Coordinación/química , Metaloproteínas/química , Superóxido Dismutasa-1/química , Zinc/química , Sitios de Unión , Humanos , Resonancia Magnética Nuclear Biomolecular
5.
J Chem Phys ; 146(19): 194202, 2017 May 21.
Artículo en Inglés | MEDLINE | ID: mdl-28527462

RESUMEN

We propose two broadband pulse schemes for 14N solid-state magic-angle-spinning (MAS) nuclear magnetic resonance (NMR) that achieves (i) complete population inversion and (ii) efficient excitation of the double-quantum spectrum using low-power single-sideband-selective pulses. We give a comprehensive theoretical description of both schemes using a common framework that is based on the jolting-frame formalism of Caravatti et al. [J. Magn. Reson. 55, 88 (1983)]. This formalism is used to determine for the first time that we can obtain complete population inversion of 14N under low-power conditions, which we do here using single-sideband-selective adiabatic pulses. It is then used to predict that double-quantum coherences can be excited using low-power single-sideband-selective pulses. We then proceed to design a new experimental scheme for double-quantum excitation. The final double-quantum excitation pulse scheme is easily incorporated into other NMR experiments, as demonstrated here for double quantum-single quantum 14N correlation spectroscopy, and 1H-14N dipolar heteronuclear multiple-quantum correlation experiments. These pulses and irradiation schemes are evaluated numerically using simulations on single crystals and full powders, as well as experimentally on ammonium oxalate ((NH4)2C2O4) at moderate MAS and glycine at ultra-fast MAS. The performance of these new NMR methods is found to be very high, with population inversion efficiencies of 100% and double-quantum excitation efficiencies of 30%-50%, which are hitherto unprecedented for the low radiofrequency field amplitudes, up to the spinning frequency, that are used here.

6.
J Chem Phys ; 136(21): 211104, 2012 Jun 07.
Artículo en Inglés | MEDLINE | ID: mdl-22697523

RESUMEN

We present an improved and general approach for implementing echo train acquisition (ETA) in magnetic resonance spectroscopy, particularly where the conventional approach of Carr-Purcell-Meiboom-Gill (CPMG) acquisition would produce numerous artifacts. Generally, adding ETA to any N-dimensional experiment creates an N + 1 dimensional experiment, with an additional dimension associated with the echo count, n, or an evolution time that is an integer multiple of the spacing between echo maxima. Here we present a modified approach, called phase incremented echo train acquisition (PIETA), where the phase of the mixing pulse and every other refocusing pulse, φ(P), is incremented as a single variable, creating an additional phase dimension in what becomes an N + 2 dimensional experiment. A Fourier transform with respect to the PIETA phase, φ(P), converts the φ(P) dimension into a Δp dimension where desired signals can be easily separated from undesired coherence transfer pathway signals, thereby avoiding cumbersome or intractable phase cycling schemes where the receiver phase must follow a master equation. This simple modification eliminates numerous artifacts present in NMR experiments employing CPMG acquisition and allows "single-scan" measurements of transverse relaxation and J-couplings. Additionally, unlike CPMG, we show how PIETA can be appended to experiments with phase modulated signals after the mixing pulse.

7.
J Magn Reson ; 325: 106943, 2021 Apr.
Artículo en Inglés | MEDLINE | ID: mdl-33647764

RESUMEN

A new parallel-plate resonator for 7Li ion cell studies is introduced along with a removable cartridge-like electrochemical cell for lithium ion battery studies. This geometry separates the RF probe from the electrochemical cell permitting charge/discharge of the cell outside the magnet and introduces the possibility of multiplexing samples under test. The new cell has a geometry that is similar to that of a real battery, unlike the majority of cells employed for MR/MRI studies to this point. The cell, with electrodes parallel to the B1 magnetic field of the probe, avoids RF attenuation during excitation/reception. The cell and RF probe dramatically increase the sample volume compared to traditional MR compatible battery designs. Ex situ and in situ 1D 7Li profiles of Li ions in the electrolyte solution of a cartridge-like cell were acquired, with a nominal resolution of 35 µm at 38 MHz. The cell and RF probe may be employed for spectroscopy, imaging and relaxation studies. We also report the results of a T1-T2 relaxation correlation experiment on both a pristine and fully charged cell. This study represents the first T1-T2 relaxation correlation experiment performed in a Li ion cell. The T1-T2 correlation maps suggest lithium intercalated into graphite is detected by this methodology in addition to other Li species.

8.
RSC Adv ; 11(47): 29870-29876, 2021 Sep 01.
Artículo en Inglés | MEDLINE | ID: mdl-35479571

RESUMEN

Fast (60 kHz) magic angle spinning solid-state NMR allows very sensitive proton detection in highly paramagnetic organometallic powders. We showcase this technique with the complete assignment of 1H and 13C resonances in a high-spin Fe(ii) polymerisation catalyst with less than 2 mg of sample at natural abundance.

9.
J Phys Chem A ; 114(17): 5503-8, 2010 May 06.
Artículo en Inglés | MEDLINE | ID: mdl-20377177

RESUMEN

Two-dimensional magic angle flipping (MAF) was employed to measure the Q((n)) distribution in a (29)Si-enriched potassium disilicate glass (K(2)O.2SiO(2)). Relative concentrations of [Q((4))] = 7.2 +/- 0.3%, [Q((3))] = 82.9 +/- 0.1%, and [Q((2))] = 9.8 +/- 0.6% were obtained. Using the thermodynamic model for Q((n)) species disproportionation, these relative concentrations yield an equilibrium constant k(3) = 0.0103 +/- 0.0008, indicating, as expected, that the Q((n)) species distribution is close to binary in the potassium disilicate glass. A Gaussian distribution of isotropic chemical shifts was observed for each Q((n)) species with mean values of -82.74 +/- 0.03, -91.32 +/- 0.01, and -101.67 +/- 0.02 ppm and standard deviations of 3.27 +/- 0.03, 4.19 +/- 0.01, and 5.09 +/- 0.03 ppm for Q((2)), Q((3)), and Q((4)), respectively. Additionally, nuclear shielding anisotropy values of zeta =-85.0 +/- 1.3 ppm, eta = 0.48 +/- 0.02 for Q((2)) and zeta = -74.9 +/- 0.2 ppm, eta = 0.03 +/- 0.01 for Q((3)) were observed in the potassium disilicate glass.

10.
Organometallics ; 36(3): 605-613, 2017 Feb 13.
Artículo en Inglés | MEDLINE | ID: mdl-31031510

RESUMEN

The use of the dialkene divinyltetramethyldisiloxane (dvtms) allows easy access to the reactive 16 valence-electron complexes [Fe0(L-L)(dvtms)], (L-L) = dppe (1,2-bis(diphenylphosphino)ethane), (1), dppp (1,2-bis(diisopropylphosphino)propane), (2), pyNMeP(iPr)2 (N-(diisopropylphosphino)-N-methylpyridin-2-amine), (4), dipe (1,2-bis(diisopropylphosphino)ethane), (5), and [Fe0(L)2(dvtms)], L = PMe3, (3), by a mild reductive route using AlEt2(OEt) as reducing agent. In contrast, by the same methodology, the 18 valence-electron complexes [Fe0(L-L)2(ethylene)], (L-L) = dppm (1,2-bis(diphenylphosphino)methane), 6, (L-L) = dppa (1,2-bis(diphenylphosphino)amine) 7 or (L-L)=dppe, 8, were obtained, which do not contain dvtms. In addition, a combined DFT and solid-state paramagnetic NMR methodology is introduced for the structure determination of 5. A comparative study of the reactivity of 1,2,4-6 and 8 with 3-hexyne highlights emerging mechanistic implications for C-C coupling reactions using these complexes as catalysts.

11.
J Magn Reson ; 268: 95-106, 2016 07.
Artículo en Inglés | MEDLINE | ID: mdl-27187210

RESUMEN

We have examined variations in the (29)Si nuclear shielding tensor parameters of SiO4 tetrahedra in a series of seven alkali and alkaline earth silicate glass compositions, Cs2O·4.81 SiO2, Rb2O·3.96 SiO2, Rb2O·2.25 SiO2, K2O·4.48 SiO2, Na2O·4.74 SiO2, BaO·2.64 SiO2, and SrO·2.36 SiO2, using natural abundance (29)Si two-dimensional magic-angle flipping (MAF) experiments. Our analyses of these 2D spectra reveal a linear dependence of the (29)Si nuclear shielding anisotropy of Q((3)) sites on the Si-non-bridging oxygen bond length, which in turn depends on the cation potential and coordination of modifier cations to the non-bridging oxygen. We also demonstrate how a combination of Cu(2+) as a paramagnetic dopant combined with echo train acquisition can reduce the total experiment time of (29)Si 2D NMR measurements by two orders of magnitude, enabling higher throughput 2D NMR studies of glass structure.

SELECCIÓN DE REFERENCIAS
DETALLE DE LA BÚSQUEDA