Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 4 de 4
Filtrar
Más filtros

Bases de datos
Tipo de estudio
Tipo del documento
Intervalo de año de publicación
1.
Nat Immunol ; 23(8): 1236-1245, 2022 08.
Artículo en Inglés | MEDLINE | ID: mdl-35882933

RESUMEN

Tissue-resident memory T cells (TRM cells) provide rapid and superior control of localized infections. While the transcription factor Runx3 is a critical regulator of CD8+ T cell tissue residency, its expression is repressed in CD4+ T cells. Here, we show that, as a direct consequence of this Runx3-deficiency, CD4+ TRM cells lacked the transforming growth factor (TGF)-ß-responsive transcriptional network that underpins the tissue residency of epithelial CD8+ TRM cells. While CD4+ TRM cell formation required Runx1, this, along with the modest expression of Runx3 in CD4+ TRM cells, was insufficient to engage the TGF-ß-driven residency program. Ectopic expression of Runx3 in CD4+ T cells incited this TGF-ß-transcriptional network to promote prolonged survival, decreased tissue egress, a microanatomical redistribution towards epithelial layers and enhanced effector functionality. Thus, our results reveal distinct programming of tissue residency in CD8+ and CD4+ TRM cell subsets that is attributable to divergent Runx3 activity.


Asunto(s)
Memoria Inmunológica , Linfocitos T CD4-Positivos/metabolismo , Linfocitos T CD8-positivos/metabolismo , Factor de Crecimiento Transformador beta/metabolismo
2.
Immunol Cell Biol ; 96(4): 379-389, 2018 04.
Artículo en Inglés | MEDLINE | ID: mdl-29363172

RESUMEN

The tuberculosis (TB) vaccine bacille Calmette-Guérin (BCG) prevents disseminated childhood TB; however, it fails to protect against the more prevalent pulmonary TB. Limited understanding of the immune response to Mycobacterium tuberculosis, the causative agent of TB, has hindered development of improved vaccines. Although memory CD4 T cells are considered the main mediators of protection against TB, recent studies suggest there are other key subsets that contribute to antimycobacterial immunity. To that end, innate cells may be involved in the protective response. In this study, we investigated the primary response of innate lymphoid cells (ILCs) to BCG exposure. Using a murine model, we showed that ILCs increased in number in the lungs and lymph nodes in response to BCG vaccination. Additionally, there was significant production of the antimycobacterial cytokine IFN-γ by ILCs. As ILCs are located at mucosal sites, it was investigated whether mucosal vaccination (intranasal) stimulated an enhanced response compared to the traditional vaccination approach (intradermal or subcutaneous). Indeed, in response to intranasal vaccination, the number of ILCs, and IFN-γ production in NK cells and ILC1s in the lungs and lymph nodes, were higher than that provoked through intradermal or subcutaneous vaccination. This work provides the first evidence that BCG vaccination activates ILCs, paving the way for future research to elucidate the protective potential of ILCs against mycobacterial infection. Additionally, the finding that lung ILCs respond rigorously to mucosal vaccination may have implications for the delivery of novel TB vaccines.


Asunto(s)
Vacuna BCG/inmunología , Inmunidad Innata , Pulmón/citología , Linfocitos/citología , Linfocitos/inmunología , Vacunación , Animales , Biomarcadores/metabolismo , Recuento de Células , Ganglios Linfáticos/citología , Ganglios Linfáticos/inmunología , Masculino , Ratones Endogámicos C57BL , Membrana Mucosa/inmunología , Fenotipo
3.
Front Microbiol ; 10: 402, 2019.
Artículo en Inglés | MEDLINE | ID: mdl-30906286

RESUMEN

Lung infection by Mycobacterium tuberculosis is characterized by chronic infection of lung-resident macrophages, long considered to be the primary hosts and determinants of the outcome of the early immune response. Although alveolar macrophages are well-known to host intracellular mycobacteria at later stages of disease, little is known about the earliest events of the innate immune response. The phagocytes that take up mycobacteria immediately following infection, and how the early lung phagocyte response is altered by vaccination with M. bovis bacille Calmette-Guérin (BCG) were unknown. Using BCG expressing the bright red fluorescent protein tdTomato and flow cytometry, we modeled early infection in C57BL/6 mice and tracked phagocyte population kinetics and uptake of mycobacteria, to better understand the involvement of specific phagocyte subsets. By 1 day post-infection, dose-dependent accumulation of neutrophils was observed and surprisingly, granulocytes comprised a greater proportion of infected phagocytes than alveolar macrophages. By 7 days post-infection alveolar macrophages had become the dominant BCG-associated phagocytes. Prior mucosal BCG exposure provided immunized mice with greater frequencies and numbers of lung macrophage subsets, and a significantly greater proportion of alveolar macrophages expressed CD11b prior to and following challenge infection. These data provide the first evidence of granulocytes as the dominant infected phagocyte subset early after mycobacterial infection, and highlight enhanced recruitment of lung macrophages as a factor associated with protection in BCG-immunized mice.

4.
World J Gastroenterol ; 24(27): 2995-3005, 2018 Jul 21.
Artículo en Inglés | MEDLINE | ID: mdl-30038466

RESUMEN

Colorectal cancer (CRC) is a heterogeneous disease, with a diverse and plastic immune cell infiltrate. These immune cells play an important role in regulating tumour growth - progression or elimination. Some populations of cells have a strong correlation with disease-free survival, making them useful prognostic markers. In particular, the infiltrate of CD3+ and CD8+ T cells into CRC tumours has been validated worldwide as a valuable indicator of patient prognosis. However, the heterogeneity of the immune response, both between patients with tumours of different molecular subtypes, and within the tumour itself, necessitates the use of multiparametric analysis in the investigation of tumour-specific immune responses. This review will outline the multiparametric analysis techniques that have been developed and applied to studying the role of immune cells in the tumour, with a focus on colorectal cancer. Because much of the data in this disease relates to T cell subsets and heterogeneity, we have used T cell populations as examples throughout. Flow and mass cytometry give a detailed representation of the cells within the tumour in a single-cell suspension on a per-cell basis. Imaging technologies, such as imaging mass cytometry, are used to investigate increasing numbers of markers whilst retaining the spatial and structural information of the tumour section and the infiltrating immune cells. Together, the analyses of multiple immune parameters can provide valuable information to guide clinical decision-making in CRC.


Asunto(s)
Biomarcadores de Tumor/análisis , Linfocitos T CD8-positivos/inmunología , Neoplasias Colorrectales/inmunología , Linfocitos Infiltrantes de Tumor/inmunología , Biomarcadores de Tumor/inmunología , Separación Celular , Toma de Decisiones Clínicas , Neoplasias Colorrectales/mortalidad , Neoplasias Colorrectales/patología , Neoplasias Colorrectales/terapia , Supervivencia sin Enfermedad , Citometría de Flujo , Perfilación de la Expresión Génica , Humanos , Inmunohistoquímica , Espectrometría de Masas/métodos , Microscopía Confocal , Pronóstico
SELECCIÓN DE REFERENCIAS
DETALLE DE LA BÚSQUEDA