RESUMEN
Toxoplasma gondii is a parasite that replicates within a specialized compartment called the parasitophorous vacuole (PV), which is surrounded by the PV membrane (PVM). To obtain essential nutrients, Toxoplasma must transport molecules across the PVM, a process mediated by the secreted parasite proteins GRA17 and GRA23. These proteins form pores in the PVM through which small molecules can diffuse in and out of the PV. GRA17 and GRA23 are synthetically lethal, suggesting that at least one pore type is essential for parasite survival. In the 'nutrient sensitized' Δgra17 strain it is likely that other Toxoplasma genes become essential, because they mediate nutrient acquisition from the host or are involved in the trafficking of GRA23 to the PVM. To identify these genes, a genome-wide loss-of-function screen was performed in wild-type and Δgra17 parasites, which identified multiple genes that were synthetically sick/lethal with GRA17. Several of these genes were involved in the correct localization of GRAs, including GRA17/GRA23, to the PVM. One of the top hits, GRA72, was predicted to form a pore on the PVM, and its deletion led to the formation of enlarged "bubble vacuoles" with reduced PVM small molecule permeability, similar to what was previously observed for Δgra17 parasites. Furthermore, Δgra72 parasites had reduced in vitro growth and virulence in mice. These findings suggest that in the absence of GRA17, other genes become essential, likely because they play a role in the proper localization of GRA23 (and other GRAs) or because they determine host-derived nutrient acquisition at the PVM.
Asunto(s)
Toxoplasma , Animales , Ratones , Toxoplasma/metabolismo , Proteínas Protozoarias/genética , Proteínas Protozoarias/metabolismo , Repeticiones Palindrómicas Cortas Agrupadas y Regularmente Espaciadas , Vacuolas/metabolismo , NutrientesRESUMEN
Many intracellular pathogens, including the protozoan parasite Toxoplasma gondii, live inside a vacuole that resides in the host cytosol. Vacuolar residence provides these pathogens with a defined niche for replication and protection from detection by host cytosolic pattern recognition receptors. However, the limiting membrane of the vacuole, which constitutes the host-pathogen interface, is also a barrier for pathogen effectors to reach the host cytosol and for the acquisition of host-derived nutrients. This review provides an update on the specialized secretion and trafficking systems used by Toxoplasma to overcome the barrier of the parasitophorous vacuole membrane and thereby allow the delivery of proteins into the host cell and the acquisition of host-derived nutrients.
Asunto(s)
Citosol/metabolismo , Interacciones Huésped-Parásitos , Nutrientes/metabolismo , Proteínas Protozoarias/metabolismo , Toxoplasma/metabolismo , Citosol/parasitología , Humanos , Redes y Vías Metabólicas , Transporte de Proteínas , Toxoplasma/patogenicidad , Vacuolas/parasitología , Factores de Virulencia/metabolismoRESUMEN
The obligate intracellular parasite Toxoplasma gondii causes life-threatening toxoplasmosis to immunocompromised individuals. The pathogenesis of Toxoplasma relies on its swift dissemination to the central nervous system through a 'Trojan Horse' mechanism using infected leukocytes as carriers. Previous work found TgWIP, a protein secreted from Toxoplasma, played a role in altering the actin cytoskeleton and promoting cell migration in infected dendritic cells (DCs). However, the mechanism behind these changes was unknown. Here, we report that TgWIP harbors two SH2-binding motifs that interact with tyrosine phosphatases Shp1 and Shp2, leading to phosphatase activation. DCs infected with Toxoplasma exhibited hypermigration, accompanying enhanced F-actin stress fibers and increased membrane protrusions such as filopodia and pseudopodia. By contrast, these phenotypes were abrogated in DCs infected with Toxoplasma expressing a mutant TgWIP lacking the SH2-binding motifs. We further demonstrated that the Rho-associated kinase (Rock) is involved in the induction of these phenotypes, in a TgWIP-Shp1/2 dependent manner. Collectively, the data uncover a molecular mechanism by which TgWIP modulates the migration dynamics of infected DCs in vitro.
Asunto(s)
Movimiento Celular , Células Dendríticas , Proteína Tirosina Fosfatasa no Receptora Tipo 11 , Proteína Tirosina Fosfatasa no Receptora Tipo 6 , Proteínas Protozoarias , Toxoplasma , Toxoplasma/metabolismo , Proteína Tirosina Fosfatasa no Receptora Tipo 11/metabolismo , Proteína Tirosina Fosfatasa no Receptora Tipo 11/genética , Células Dendríticas/metabolismo , Células Dendríticas/parasitología , Animales , Proteína Tirosina Fosfatasa no Receptora Tipo 6/metabolismo , Proteínas Protozoarias/metabolismo , Proteínas Protozoarias/genética , Humanos , Ratones , Quinasas Asociadas a rho/metabolismo , Toxoplasmosis/metabolismo , Toxoplasmosis/parasitología , Toxoplasmosis/patología , Ratones Endogámicos C57BLRESUMEN
The protozoan parasite Toxoplasma gondii lives inside a vacuole in the host cytosol where it is protected from host cytoplasmic innate immune responses. However, IFNγ-dependent cell-autonomous immunity can destroy the vacuole and the parasite inside. Toxoplasma strain differences in susceptibility to human IFNγ exist, but the Toxoplasma effector(s) that determine these differences are unknown. We show that in human primary fibroblasts, the polymorphic Toxoplasma-secreted effector GRA15 mediates the recruitment of ubiquitin ligases, including TRAF2 and TRAF6, to the vacuole membrane, which enhances recruitment of ubiquitin receptors (p62/NDP52) and ubiquitin-like molecules (LC3B, GABARAP). This ultimately leads to lysosomal degradation of the vacuole. In murine fibroblasts, GRA15-mediated TRAF6 recruitment mediates the recruitment of immunity-related GTPases and destruction of the vacuole. Thus, we have identified how the Toxoplasma effector GRA15 affects cell-autonomous immunity in human and murine cells.
Asunto(s)
Prepucio/parasitología , Interferón gamma/farmacología , Proteínas Protozoarias/metabolismo , Toxoplasma/crecimiento & desarrollo , Ubiquitina-Proteína Ligasas/metabolismo , Animales , Células Cultivadas , Fibroblastos/citología , Fibroblastos/metabolismo , Fibroblastos/parasitología , Prepucio/citología , Prepucio/metabolismo , Regulación de la Expresión Génica/efectos de los fármacos , Humanos , Interferón gamma/efectos de los fármacos , Péptidos y Proteínas de Señalización Intracelular/metabolismo , Masculino , Ratones , Transducción de Señal , Toxoplasma/metabolismo , Vacuolas/metabolismoRESUMEN
The focus of current studies was to fabricate dose flexible printlets of dapsone (DDS) for pediatric patients by selective laser sintering (SLS) 3D printing method, and evaluate its physicochemical, patient in-use stability, and pharmacokinetic attributes. Eight formulations were fabricated using Kollicoat® IR, Eudragit® L-100-55 and StarCap®as excipients and evaluated for hardness, disintegration, dissolution, amorphous phase by differential scanning calorimetry and X-ray powder diffraction, in-use stability at 30 oC/75% RH for a month, and pharmacokinetic study in Sprague Dawley rats. The hardness, and disintegration of the printlets varied from 2.6±1.0 (F4) to 7.7±0.9 (F3) N and 2.0±0.4 (F2) to 7.6±0.6 (F3) sec, respectively. The drug was partially present as an amorphous form in the printlets. The drug was completely (>85%) dissolved in 20 min. No change in drug form or dissolution extent was observed after storage at in use condition. Pharmacokinetic profiles of both formulations (tablets and printlets) were almost superimposable with no statistical difference in pharmacokinetic parameters (Tmax, Cmax, and AUC0-¥)between formulations (p>0.05). Values of EC50 (half maximal effective concentration) and EC90 (maximal concentration inducing 90% maximal response) were 0.50±0.15 and 1.32±0.26 mM, 0.41±0.06 and 1.11±0.21, and 0.42±0.13 and 1.36±0.19 mM for DDS, printlet and tablet formulations, respectively, and differences were statistically insignificant (p>0.05). In conclusion, tablet and printlet formulations are expected to be clinical similar, thus clinically interchangeable.
Asunto(s)
Antimaláricos , Dapsona , Impresión Tridimensional , Ratas Sprague-Dawley , Antimaláricos/farmacocinética , Antimaláricos/administración & dosificación , Animales , Ratas , Dapsona/farmacocinética , Dapsona/administración & dosificación , Dapsona/química , Química Farmacéutica/métodos , Solubilidad , Masculino , Excipientes/química , Humanos , Comprimidos/farmacocinética , Estabilidad de Medicamentos , Niño , Rastreo Diferencial de Calorimetría/métodos , Composición de Medicamentos/métodos , Difracción de Rayos X/métodosRESUMEN
Apicomplexan parasites have unique apical rhoptry and microneme secretory organelles that are crucial for host infection, although their role in protection against Toxoplasma gondii infection is not thoroughly understood. Here, we report a novel function of the endolysosomal T. gondii sortilin-like receptor (TgSORTLR), which mediates trafficking to functional apical organelles and their subsequent secretion of virulence factors that are critical to the induction of sterile immunity against parasite reinfection. We further demonstrate that the T. gondii armadillo repeats-only protein (TgARO) mutant, which is deficient only in apical secretion of rhoptries, is also critical in mounting protective immunity. The lack of TgSORTLR and TgARO proteins completely inhibited T-helper 1-dependent adaptive immunity and compromised the function of natural killer T-cell-mediated innate immunity. Our findings reveal an essential role for apical secretion in promoting sterile protection against T. gondii and provide strong evidence for rhoptry-regulated discharge of antigens as a key effector for inducing protective immunity.
Asunto(s)
Inmunidad Adaptativa , Inmunidad Innata , Orgánulos/inmunología , Proteínas Protozoarias/inmunología , Toxoplasma/inmunología , Proteínas Adaptadoras del Transporte Vesicular/inmunología , Animales , Antígenos de Protozoos/sangre , Línea Celular , Interacciones Huésped-Parásitos , Interferón gamma/inmunología , Interleucina-10/inmunología , Interleucina-1beta/inmunología , Ratones Endogámicos BALB C , Ratones Endogámicos C57BL , Células T Asesinas Naturales/inmunología , Transporte de Proteínas/inmunología , Toxoplasmosis/inmunologíaRESUMEN
The obligate intracellular parasite Toxoplasma gondii causes life-threatening toxoplasmosis to immunocompromised individuals. The pathogenesis of Toxoplasma relies on its swift dissemination to the central nervous system through a 'Trojan Horse' mechanism using infected leukocytes as carriers. Previous work found TgWIP, a protein secreted from Toxoplasma, played a role in altering the actin cytoskeleton and promoting cell migration in infected dendritic cells (DCs). However, the mechanism behind these changes was unknown. Here, we report that TgWIP harbors two SH2-binding motifs that interact with tyrosine phosphatases Shp1 and Shp2, leading to phosphatase activation. DCs infected with Toxoplasma exhibited hypermigration, accompanying enhanced F-actin stress fibers and increased membrane protrusions such as filopodia and pseudopodia. By contrast, these phenotypes were abrogated in DCs infected with Toxoplasma expressing a mutant TgWIP lacking the SH2-binding motifs. We further demonstrated that the Rho-associated kinase (Rock) is involved in the induction of these phenotypes, in a TgWIP-Shp1/2 dependent manner. Collectively, the data uncover a molecular mechanism by which TgWIP modulates the migration dynamics of infected DCs in vitro.
RESUMEN
Toxoplasma gondii is an intracellular parasite that can activate the NLRP1 inflammasome leading to macrophage pyroptosis in Lewis rats, but the underlying mechanism is not well understood. In this study, we performed a genome-wide CRISPR screen and identified the dense granule proteins GRA35, GRA42, and GRA43 as the Toxoplasma effectors mediating cell death in Lewis rat macrophages. GRA35 localizes on the parasitophorous vacuole membrane, where it interacts with the host E3 ubiquitin ligase ITCH. Inhibition of proteasome activity or ITCH knockout prevented pyroptosis in Toxoplasma-infected Lewis rat macrophages, consistent with the "NLRP1 functional degradation model." However, there was no evidence that ITCH directly ubiquitinates or interacts with rat NLRP1. We also found that GRA35-ITCH interaction affected Toxoplasma fitness in IFNγ-activated human fibroblasts, likely due to ITCH's role in recruiting ubiquitin and the parasite-restriction factor RNF213 to the parasitophorous vacuole membrane. These findings identify a new role of host E3 ubiquitin ligase ITCH in mediating effector-triggered immunity, a critical concept that involves recognizing intracellular pathogens and initiating host innate immune responses.IMPORTANCEEffector-triggered immunity represents an innate immune defense mechanism that plays a crucial role in sensing and controlling intracellular pathogen infection. The NLRP1 inflammasome in the Lewis rats can detect Toxoplasma infection, which triggers proptosis in infected macrophages and eliminates the parasite's replication niche. The work reported here revealed that host E3 ubiquitin ligase ITCH is able to recognize and interact with Toxoplasma effector protein GRA35 localized on the parasite-host interface, leading to NLRP1 inflammasome activation in Lewis rat macrophages. Furthermore, ITCH-GRA35 interaction contributes to the restriction of Toxoplasma in human fibroblasts stimulated by IFNγ. Thus, this research provides valuable insights into understanding pathogen recognition and restriction mediated by host E3 ubiquitin ligase.
Asunto(s)
Toxoplasma , Animales , Humanos , Ratas , Adenosina Trifosfatasas , Inmunidad Innata , Inflamasomas , Proteínas NLR , Proteínas Protozoarias/metabolismo , Ratas Endogámicas Lew , Toxoplasma/metabolismo , Ubiquitina-Proteína LigasasRESUMEN
Apicomplexan parasites possess specialized secretory organelles called rhoptries, micronemes, and dense granules that play a vital role in host infection. In this study, we demonstrate that TgREMIND, a protein found in Toxoplasma gondii, is necessary for the biogenesis of rhoptries and dense granules. TgREMIND contains a Fes-CIP4 homology-Bin/Amphiphysin/Rvs (F-BAR) domain, which binds to membrane phospholipids, as well as a novel uncharacterized domain that we have named REMIND (regulator of membrane-interacting domain). Both the F-BAR domain and the REMIND are crucial for TgREMIND functions. When TgREMIND is depleted, there is a significant decrease in the abundance of dense granules and abnormal transparency of rhoptries, leading to a reduction in protein secretion from these organelles. The absence of TgREMIND inhibits host invasion and parasite dissemination, demonstrating that TgREMIND is essential for the proper function of critical secretory organelles required for successful infection by Toxoplasma.
Asunto(s)
Parásitos , Toxoplasma , Animales , Toxoplasma/metabolismo , Proteínas de la Membrana/metabolismo , Proteínas Protozoarias/metabolismo , Orgánulos/metabolismo , Parásitos/metabolismo , Fosfatidilinositoles/metabolismoRESUMEN
OBJECTIVES: The focus of the present research is to develop printlet formulations of pyrimethamine (PMT). METHODS: Printlets formulation of PMT were developed by screening design by varying laser scanning speed, Kollidon® VA 64, polyvinylpyrrolidone, and disintegrant. RESULTS: Laser scanning speed, Kollidon® VA, and disintegrant had statistically significant effect on hardness, disintegration time, and/or dissolution (p < 0.05). Dissolution was almost 100% in 30 min. X-ray powder diffraction indicated partial amorphous transformation of the crystalline drug. Pharmacokinetic and anti-toxoplasma activity profiles of the printlets and compressed tablets were superimposable with no statistical difference (p > 0.05). CONCLUSION: Clinical performance of the printlets would be similar to the compressed tablets.
Asunto(s)
Toxoplasma , Toxoplasmosis , Humanos , Niño , Pirimetamina/uso terapéutico , Povidona , Excipientes/química , Comprimidos/química , SolubilidadRESUMEN
Toxoplasma gondii is an intracellular parasite that can activate the NLRP1 inflammasome leading to macrophage pyroptosis in Lewis rats, but the underlying mechanism is not well understood. In this study, we performed a genome-wide CRISPR screen and identified the dense granule proteins GRA35, GRA42, and GRA43 as the Toxoplasma effectors mediating cell death in Lewis rat macrophages. GRA35 localizes on the parasitophorous vacuole membrane, where it interacts with the host E3 ubiquitin ligase ITCH. Inhibition of proteasome activity or ITCH knockout prevented pyroptosis in Toxoplasma-infected Lewis rat macrophages, consistent with the "NLRP1 functional degradation model". However, there was no evidence that ITCH directly ubiquitinates or interacts with rat NLRP1. We also found that GRA35-ITCH interaction affected Toxoplasma fitness in IFNγ-activated human fibroblasts, likely due to ITCH's role in recruiting ubiquitin and the parasite-restriction factor RNF213 to the parasitophorous vacuole membrane. These findings identify a new role of host E3 ubiquitin ligase ITCH in mediating effector-triggered immunity, a critical concept that involves recognizing intracellular pathogens and initiating host innate immune responses.
RESUMEN
The virulence of eukaryotic parasites like Toxoplasma gondii depends on their capacity to escape from the host immune response and disseminate throughout the host organism. However, Toxoplasma gene products essential for its in vivo pathogenesis remain uncharacterized. Here, we present the complete workflow of a CRISPR-Cas9 in vivo loss-of-function screen to identify Toxoplasma fitness-conferring genes. This protocol can be used to uncover gene products that play a role in Toxoplasma immune evasion, nutrient acquisition, dissemination, and tissue colonization. For complete details on the use and execution of this protocol, please refer to Sangaré et al. (2019).
Asunto(s)
Sistemas CRISPR-Cas/genética , Técnicas Genéticas , Toxoplasma , Virulencia/genética , Animales , Femenino , Mutación con Pérdida de Función/genética , Ratones , Toxoplasma/genética , Toxoplasma/patogenicidad , Toxoplasma/fisiología , Toxoplasmosis/parasitologíaRESUMEN
Macrophages play an essential role in the early immune response against Toxoplasma and are the cell type preferentially infected by the parasite in vivo. Interferon gamma (IFNγ) elicits a variety of anti-Toxoplasma activities in macrophages. Using a genome-wide CRISPR screen we identify 353 Toxoplasma genes that determine parasite fitness in naÑve or IFNγ-activated murine macrophages, seven of which are further confirmed. We show that one of these genes encodes dense granule protein GRA45, which has a chaperone-like domain, is critical for correct localization of GRAs into the PVM and secretion of GRA effectors into the host cytoplasm. Parasites lacking GRA45 are more susceptible to IFNγ-mediated growth inhibition and have reduced virulence in mice. Together, we identify and characterize an important chaperone-like GRA in Toxoplasma and provide a resource for the community to further explore the function of Toxoplasma genes that determine fitness in IFNγ-activated macrophages.
Asunto(s)
Interferón gamma/inmunología , Macrófagos/inmunología , Toxoplasma/genética , Toxoplasmosis/inmunología , Animales , Femenino , Genoma de Protozoos , Interacciones Huésped-Parásitos , Humanos , Interferón gamma/genética , Macrófagos/parasitología , Masculino , Ratones , Ratones Endogámicos C57BL , Toxoplasma/crecimiento & desarrollo , Toxoplasma/metabolismo , Toxoplasma/patogenicidad , Toxoplasmosis/genética , Toxoplasmosis/parasitología , VirulenciaRESUMEN
The protozoan parasite Toxoplasma gondii secretes proteins from specialized organelles, the rhoptries, and dense granules, which are involved in the modulation of host cell processes. Dense granule protein GRA15 activates the nuclear factor kappa B (NF-κB) pathway, which plays an important role in cell death, innate immunity, and inflammation. Exactly how GRA15 activates the NF-κB pathway is unknown. Here we show that GRA15 interacts with tumor necrosis factor receptor-associated factors (TRAFs), which are adaptor proteins functioning upstream of the NF-κB transcription factor. We identified several TRAF binding sites in the GRA15 amino acid sequence and showed that these are involved in NF-κB activation. Furthermore, a TRAF2 knockout cell line has impaired GRA15-mediated NF-κB activation. Thus, we determined the mechanism for GRA15-dependent NF-κB activation.IMPORTANCE The parasite Toxoplasma can cause birth defects and severe disease in immunosuppressed patients. Strain differences in pathogenicity exist, and these differences are due to polymorphic effector proteins that Toxoplasma secretes into the host cell to coopt host cell functions. The effector protein GRA15 of some Toxoplasma strains activates the nuclear factor kappa B (NF-κB) pathway, which plays an important role in cell death, innate immunity, and inflammation. We show that GRA15 interacts with TNF receptor-associated factors (TRAFs), which are adaptor proteins functioning upstream of the NF-κB transcription factor. Deletion of TRAF-binding sites in GRA15 greatly reduces its ability to activate the NF-κB pathway, and TRAF2 knockout cells have impaired GRA15-mediated NF-κB activation. Thus, we determined the mechanism for GRA15-dependent NF-κB activation.
Asunto(s)
FN-kappa B/metabolismo , Proteínas Protozoarias/metabolismo , Transducción de Señal , Toxoplasma/fisiología , Toxoplasmosis/metabolismo , Toxoplasmosis/parasitología , Péptidos y Proteínas Asociados a Receptores de Factores de Necrosis Tumoral/metabolismo , Sitios de Unión , Expresión Génica , Interacciones Huésped-Patógeno , Humanos , Unión Proteica , Proteínas Protozoarias/química , Proteínas Protozoarias/genética , Péptidos y Proteínas Asociados a Receptores de Factores de Necrosis Tumoral/químicaRESUMEN
Upon invasion of Lewis rat macrophages, Toxoplasma rapidly induces programmed cell death (pyroptosis), which prevents Toxoplasma replication, possibly explaining the resistance of the Lewis rat to Toxoplasma Using a chemical mutagenesis screen, we identified Toxoplasma mutants that no longer induced pyroptosis. Whole-genome sequencing led to the identification of three Toxoplasma parasitophorous vacuole-localized dense granule proteins, GRA35, GRA42, and GRA43, that are individually required for induction of Lewis rat macrophage pyroptosis. Macrophage infection with Δgra35, Δgra42, and Δgra43 parasites led to greatly reduced cell death rates and enhanced parasite replication. Lewis rat macrophages infected with parasites containing a single, double, or triple deletion of these GRAs showed similar levels of cell viability, suggesting that the three GRAs function in the same pathway. Deletion of GRA42 or GRA43 resulted in GRA35 (and other GRAs) being retained inside the parasitophorous vacuole instead of being localized to the parasitophorous vacuole membrane. Despite having greatly enhanced replication in Lewis rat macrophages in vitro, Δgra35, Δgra42, and Δgra43 parasites did not establish a chronic infection in Lewis rats. Toxoplasma did not induce F344 rat macrophage pyroptosis, but F344 rats infected with Δgra35, Δgra42, and Δgra43 parasites had reduced cyst numbers. Thus, these GRAs determined parasite in vivo fitness in F344 rats. Overall, our data suggest that these three Toxoplasma dense granule proteins play a critical role in establishing a chronic infection in vivo, independently of their role in mediating macrophage pyroptosis, likely due to their importance in regulating protein localization to the parasitophorous vacuole membrane.IMPORTANCE Inflammasomes are major components of the innate immune system and are responsible for detecting various microbial and environmental danger signals. Upon invasion of Lewis rat macrophages, the parasite rapidly activates the NLRP1 inflammasome, resulting in pyroptosis and elimination of the parasite's replication niche. The work reported here revealed that Toxoplasma GRA35, GRA42, and GRA43 are required for induction of Lewis rat macrophage pyroptosis. GRA42 and GRA43 mediate the correct localization of other GRAs, including GRA35, to the parasitophorous vacuole membrane. These three GRAs were also found to be important for parasite in vivo fitness in a Toxoplasma-susceptible rat strain, independently of their role in NLRP1 inflammasome activation, suggesting that they perform other important functions. Thus, this study identified three GRAs that mediate the induction of Lewis rat macrophage pyroptosis and are required for pathogenesis of the parasite.
Asunto(s)
Interacciones Huésped-Patógeno , Macrófagos/inmunología , Macrófagos/parasitología , Proteínas Protozoarias/metabolismo , Piroptosis , Toxoplasma/inmunología , Animales , Supervivencia Celular , Células Cultivadas , Análisis Mutacional de ADN , Eliminación de Gen , Mutagénesis , Proteínas Protozoarias/genética , Ratas Endogámicas F344 , Ratas Endogámicas Lew , Toxoplasma/genética , Secuenciación Completa del GenomaRESUMEN
Toxoplasma can reach distant organs, especially the brain, leading to a lifelong chronic phase. However, genes involved in related in vivo processes are currently unknown. Here, we use focused CRISPR libraries to identify Toxoplasma genes that affect in vivo fitness. We focus on TgWIP, whose deletion affects Toxoplasma dissemination to distant organs. We show that TgWIP is secreted into the host cell upon invasion and interacts with the host WAVE regulatory complex and SHP2 phosphatase, both of which regulate actin dynamics. TgWIP affects the morphology of dendritic cells and mediates the dissolution of podosomes, which dendritic cells use to adhere to extracellular matrix. TgWIP enhances the motility and transmigration of parasitized dendritic cells, likely explaining its effect on in vivo fitness. Our results provide a framework for systemic identification of Toxoplasma genes with in vivo effects at the site of infection or on dissemination to distant organs, including the brain.
Asunto(s)
Movimiento Celular/fisiología , Proteínas del Citoesqueleto/metabolismo , Células Dendríticas/fisiología , Proteínas Protozoarias/genética , Toxoplasma/genética , Animales , Línea Celular , Repeticiones Palindrómicas Cortas Agrupadas y Regularmente Espaciadas/genética , Humanos , Ratones , Ratones Endogámicos C57BL , Proteína Tirosina Fosfatasa no Receptora Tipo 11/metabolismo , Toxoplasma/patogenicidad , Factores de Virulencia/genética , Familia de Proteínas del Síndrome de Wiskott-Aldrich/metabolismoRESUMEN
Membrane trafficking pathways play critical roles in Apicomplexa, a phylum of protozoan parasites that cause life-threatening diseases worldwide. Here we report the first retromer-trafficking interactome in Toxoplasma gondii. This retromer complex includes a trimer Vps35-Vps26-Vps29 core complex that serves as a hub for the endosome-like compartment and parasite-specific proteins. Conditional ablation of TgVps35 reveals that the retromer complex is crucial for the biogenesis of secretory organelles and for maintaining parasite morphology. We identify TgHP12 as a parasite-specific and retromer-associated protein with functions unrelated to secretory organelle formation. Furthermore, the major facilitator superfamily homologue named TgHP03, which is a multiple spanning and ligand transmembrane transporter, is maintained at the parasite membrane by retromer-mediated endocytic recycling. Thus, our findings highlight that both evolutionarily conserved and unconventional proteins act in concert in T. gondii by controlling retrograde transport that is essential for parasite integrity and host infection.