Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 2 de 2
Filtrar
Más filtros

Bases de datos
Tipo de estudio
Tipo del documento
País de afiliación
Intervalo de año de publicación
1.
Nature ; 556(7699): 126-129, 2018 04 05.
Artículo en Inglés | MEDLINE | ID: mdl-29512650

RESUMEN

Early co-transcriptional events during eukaryotic ribosome assembly result in the formation of precursors of the small (40S) and large (60S) ribosomal subunits. A multitude of transient assembly factors regulate and chaperone the systematic folding of pre-ribosomal RNA subdomains. However, owing to a lack of structural information, the role of these factors during early nucleolar 60S assembly is not fully understood. Here we report cryo-electron microscopy (cryo-EM) reconstructions of the nucleolar pre-60S ribosomal subunit in different conformational states at resolutions of up to 3.4 Å. These reconstructions reveal how steric hindrance and molecular mimicry are used to prevent both premature folding states and binding of later factors. This is accomplished by the concerted activity of 21 ribosome assembly factors that stabilize and remodel pre-ribosomal RNA and ribosomal proteins. Among these factors, three Brix-domain proteins and their binding partners form a ring-like structure at ribosomal RNA (rRNA) domain boundaries to support the architecture of the maturing particle. The existence of mutually exclusive conformations of these pre-60S particles suggests that the formation of the polypeptide exit tunnel is achieved through different folding pathways during subsequent stages of ribosome assembly. These structures rationalize previous genetic and biochemical data and highlight the mechanisms that drive eukaryotic ribosome assembly in a unidirectional manner.


Asunto(s)
Nucléolo Celular/química , Microscopía por Crioelectrón , Subunidades Ribosómicas Grandes de Eucariotas/metabolismo , Subunidades Ribosómicas Grandes de Eucariotas/ultraestructura , Saccharomyces cerevisiae , Reactivos de Enlaces Cruzados/química , Modelos Moleculares , Imitación Molecular , Dominios Proteicos , Estabilidad Proteica , Pliegue del ARN , ARN Ribosómico/química , ARN Ribosómico/genética , ARN Ribosómico/metabolismo , ARN Ribosómico/ultraestructura , Reproducibilidad de los Resultados , Proteínas Ribosómicas/química , Proteínas Ribosómicas/metabolismo , Proteínas Ribosómicas/ultraestructura , Subunidades Ribosómicas Grandes de Eucariotas/química , Saccharomyces cerevisiae/química , Saccharomyces cerevisiae/genética , Saccharomyces cerevisiae/ultraestructura , Proteínas de Saccharomyces cerevisiae/química , Proteínas de Saccharomyces cerevisiae/metabolismo , Proteínas de Saccharomyces cerevisiae/ultraestructura
2.
J Mol Biol ; 433(15): 167055, 2021 07 23.
Artículo en Inglés | MEDLINE | ID: mdl-34022208

RESUMEN

We describe an enhancement of traditional genomics-based approaches to improve the success of structure determination of membrane proteins. Following a broad screen of sequence space to identify initial expression-positive targets, we employ a second step to select orthologs with closely related sequences to these hits. We demonstrate that a greater percentage of these latter targets express well and are stable in detergent, increasing the likelihood of identifying candidates that will ultimately yield structural information.


Asunto(s)
Bacterias/metabolismo , Proteínas de la Membrana/química , Proteínas de la Membrana/genética , Secuencia de Aminoácidos , Bacterias/genética , Proteínas Bacterianas/química , Proteínas Bacterianas/genética , Genómica , Modelos Moleculares , Conformación Proteica
SELECCIÓN DE REFERENCIAS
DETALLE DE LA BÚSQUEDA