Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 20 de 37
Filtrar
1.
J Neurosci ; 41(20): 4524-4535, 2021 05 19.
Artículo en Inglés | MEDLINE | ID: mdl-33846232

RESUMEN

Ca2+-dependent activator protein for secretion 2 (CAPS2) regulates dense-core vesicle (DCV) exocytosis to facilitate peptidergic and catecholaminergic transmitter release. CAPS2 deficiency in mice has mild neuronal effects but markedly impairs social behavior. Rare de novo Caps2 alterations also occur in autism spectrum disorder, although whether CAPS2-mediated release influences social behavior remains unclear. Here, we demonstrate that CAPS2 is associated with DCV exocytosis-mediated release of the social interaction modulatory peptide oxytocin (OXT). CAPS2 is expressed in hypothalamic OXT neurons and localizes to OXT nerve projection and OXT release sites, such as the pituitary. Caps2 KO mice exhibited reduced plasma albeit increased hypothalamic and pituitary OXT levels, indicating insufficient release. OXT neuron-specific Caps2 conditional KO supported CAPS2 function in pituitary OXT release, also affording impaired social interaction and recognition behavior that could be ameliorated by exogenous OXT administered intranasally. Thus, CAPS2 appears critical for OXT release, thereby being associated with social behavior.SIGNIFICANCE STATEMENT The role of the neuropeptide oxytocin in enhancing social interaction and social bonding behavior has attracted considerable public and neuroscientific attention. A central issue in oxytocin biology concerns how oxytocin release is regulated. Our study provides an important insight into the understanding of oxytocin-dependent social behavior from the perspective of the CAPS2-regulated release mechanism.


Asunto(s)
Conducta Animal/fisiología , Proteínas de Unión al Calcio/metabolismo , Exocitosis/fisiología , Proteínas del Tejido Nervioso/metabolismo , Oxitocina/metabolismo , Conducta Social , Animales , Hipotálamo/metabolismo , Ratones , Ratones Noqueados , Vesículas Secretoras/metabolismo
2.
Nature ; 534(7605): 115-8, 2016 06 02.
Artículo en Inglés | MEDLINE | ID: mdl-27251287

RESUMEN

Recent studies suggest that a shared neural ensemble may link distinct memories encoded close in time. According to the memory allocation hypothesis, learning triggers a temporary increase in neuronal excitability that biases the representation of a subsequent memory to the neuronal ensemble encoding the first memory, such that recall of one memory increases the likelihood of recalling the other memory. Here we show in mice that the overlap between the hippocampal CA1 ensembles activated by two distinct contexts acquired within a day is higher than when they are separated by a week. Several findings indicate that this overlap of neuronal ensembles links two contextual memories. First, fear paired with one context is transferred to a neutral context when the two contexts are acquired within a day but not across a week. Second, the first memory strengthens the second memory within a day but not across a week. Older mice, known to have lower CA1 excitability, do not show the overlap between ensembles, the transfer of fear between contexts, or the strengthening of the second memory. Finally, in aged mice, increasing cellular excitability and activating a common ensemble of CA1 neurons during two distinct context exposures rescued the deficit in linking memories. Taken together, these findings demonstrate that contextual memories encoded close in time are linked by directing storage into overlapping ensembles. Alteration of these processes by ageing could affect the temporal structure of memories, thus impairing efficient recall of related information.


Asunto(s)
Región CA1 Hipocampal/citología , Región CA1 Hipocampal/fisiología , Memoria/fisiología , Neuronas/fisiología , Animales , Calcio/análisis , Miedo , Masculino , Recuerdo Mental/fisiología , Ratones , Ratones Endogámicos C57BL , Modelos Neurológicos , Factores de Tiempo
3.
J Neurochem ; 159(3): 603-617, 2021 11.
Artículo en Inglés | MEDLINE | ID: mdl-34379812

RESUMEN

Two common conjugated linoleic acids (LAs), cis-9, trans-11 CLA (c9,t11 CLA) and trans-10, cis-12 CLA (t10,c12 CLA), exert various biological activities. However, the effect of CLA on the generation of neurotoxic amyloid-ß (Aß) protein remains unclear. We found that c9,t11 CLA significantly suppressed the generation of Aß in mouse neurons. CLA treatment did not affect the level of ß-site APP-cleaving enzyme 1 (BACE1), a component of active γ-secretase complex presenilin 1 amino-terminal fragment, or Aß protein precursor (APP) in cultured neurons. BACE1 and γ-secretase activities were not directly affected by c9,t11 CLA. Localization of BACE1 and APP in early endosomes increased in neurons treated with c9,t11 CLA; concomitantly, the localization of both proteins was reduced in late endosomes, the predominant site of APP cleavage by BACE1. The level of CLA-containing phosphatidylcholine (CLA-PC) increased dramatically in neurons incubated with CLA. Incorporation of phospholipids containing c9,t11 CLA, but not t10,c12 CLA, into the membrane may affect the localization of some membrane-associated proteins in intracellular membrane compartments. Thus, in neurons treated with c9,t11 CLA, reduced colocalization of APP with BACE1 in late endosomes may decrease APP cleavage by BACE1 and subsequent Aß generation. Our findings suggest that the accumulation of c9,t11 CLA-PC/LPC in neuronal membranes suppresses the production of neurotoxic Aß in neurons.


Asunto(s)
Péptidos beta-Amiloides/biosíntesis , Ácido Linoleico/farmacología , Ácidos Linoleicos Conjugados/farmacología , Neuronas/metabolismo , Secretasas de la Proteína Precursora del Amiloide/metabolismo , Péptidos beta-Amiloides/toxicidad , Precursor de Proteína beta-Amiloide/metabolismo , Animales , Ácido Aspártico Endopeptidasas/metabolismo , Células Cultivadas , Suplementos Dietéticos , Endosomas/efectos de los fármacos , Endosomas/metabolismo , Inmunohistoquímica , Masculino , Ratones , Ratones Endogámicos C57BL , Neuronas/efectos de los fármacos , Fosfatidilcolinas/metabolismo
4.
Cell Tissue Res ; 382(1): 125-134, 2020 Oct.
Artículo en Inglés | MEDLINE | ID: mdl-32897423

RESUMEN

Brain-derived neurotrophic factor (BDNF) is known to control a wide variety of brain functions, ranging from memory formation to food intake. However, since the BDNF levels are extremely low in the nervous system, the dynamics in neurons from intracellular trafficking to secretion is absolutely complicated; the understanding is not fully promoted. We here review the findings of those critical mechanisms from intracellular trafficking to the secretion of BDNF. Furthermore, to solve this issue, technological advances for the detection, measurement, and imaging of this growth factor are essential. We believe that this review helps the study of these complex but critical mechanisms of BDNF.


Asunto(s)
Factor Neurotrófico Derivado del Encéfalo/genética , Transporte de Proteínas/genética , Humanos , Transmisión Sináptica
5.
Biochem Biophys Res Commun ; 509(2): 429-434, 2019 02 05.
Artículo en Inglés | MEDLINE | ID: mdl-30594389

RESUMEN

Appropriate synapse formation during development is necessary for normal brain function, and synapse impairment is often associated with brain dysfunction. Brain-derived neurotrophic factor (BDNF) and neurotrophin-3 (NT-3) are key factors in regulating synaptic development. We previously reported that BDNF/NT-3 secretion was enhanced by calcium-dependent activator protein for secretion 2 (CADPS2). Although BDNF/NT-3 and CADPS2 are co-expressed in various brain regions, the effect of Cadps2-deficiency on brain region-specific BDNF/NT-3 levels and synaptic development remains elusive. Here, we show developmental changes of BDNF/NT-3 levels and we assess disruption of excitatory/inhibitory synapses in multiple brain regions (cerebellum, hypothalamus, striatum, hippocampus, parietal cortex and prefrontal cortex) of Cadps2 knockout (KO) mice compared with wild-type (WT) mice. Compared with WT, BDNF levels in KO mice were reduced in young/adult hippocampus, but increased in young hypothalamus, while NT-3 levels were reduced in adult cerebellum and young hippocampus, but increased in adult parietal cortex. Immunofluorescence of vGluT1, an excitatory synapse marker, and vGAT, an inhibitory synapse marker, in adult KO showed that vGluT1 was higher in the cerebellum and parietal cortex but lower in the hippocampus, whereas vGAT was lower in the hippocampus and parietal cortex compared with WT. Immunolabeling for both vGluT1 and vGAT was increased in the parietal cortex but vGAT was decreased in the cerebellum in adult KO compared with WT. These data suggest that CADPS2-mediated secretion of BDNF/NT-3 may be involved in development and maturation of synapses and in the balance between inhibitory and excitatory synapses.


Asunto(s)
Factor Neurotrófico Derivado del Encéfalo/genética , Proteínas de Unión al Calcio/genética , Regulación del Desarrollo de la Expresión Génica , Proteínas del Tejido Nervioso/genética , Neuronas/metabolismo , Neurotrofina 3/genética , Sinapsis/genética , Animales , Factor Neurotrófico Derivado del Encéfalo/metabolismo , Proteínas de Unión al Calcio/deficiencia , Cerebelo/citología , Cerebelo/crecimiento & desarrollo , Cerebelo/metabolismo , Cuerpo Estriado/citología , Cuerpo Estriado/crecimiento & desarrollo , Cuerpo Estriado/metabolismo , Hipocampo/citología , Hipocampo/crecimiento & desarrollo , Hipocampo/metabolismo , Hipotálamo/citología , Hipotálamo/crecimiento & desarrollo , Hipotálamo/metabolismo , Masculino , Ratones , Ratones Noqueados , Proteínas del Tejido Nervioso/deficiencia , Neuronas/citología , Neurotrofina 3/metabolismo , Especificidad de Órganos , Lóbulo Parietal/citología , Lóbulo Parietal/crecimiento & desarrollo , Lóbulo Parietal/metabolismo , Corteza Prefrontal/citología , Corteza Prefrontal/crecimiento & desarrollo , Corteza Prefrontal/metabolismo , Sinapsis/clasificación , Sinapsis/metabolismo , Transmisión Sináptica/genética , Proteína 1 de Transporte Vesicular de Glutamato/genética , Proteína 1 de Transporte Vesicular de Glutamato/metabolismo , Proteínas del Transporte Vesicular de Aminoácidos Inhibidores/genética , Proteínas del Transporte Vesicular de Aminoácidos Inhibidores/metabolismo
6.
Nat Rev Neurosci ; 15(3): 157-69, 2014 Mar.
Artículo en Inglés | MEDLINE | ID: mdl-24496410

RESUMEN

There is now compelling evidence that the allocation of memory to specific neurons (neuronal allocation) and synapses (synaptic allocation) in a neurocircuit is not random and that instead specific mechanisms, such as increases in neuronal excitability and synaptic tagging and capture, determine the exact sites where memories are stored. We propose an integrated view of these processes, such that neuronal allocation, synaptic tagging and capture, spine clustering and metaplasticity reflect related aspects of memory allocation mechanisms. Importantly, the properties of these mechanisms suggest a set of rules that profoundly affect how memories are stored and recalled.


Asunto(s)
Hipocampo/fisiología , Memoria/fisiología , Modelos Neurológicos , Plasticidad Neuronal/fisiología , Neuronas/fisiología , Sinapsis/fisiología , Animales , Espinas Dendríticas/fisiología , Humanos , Red Nerviosa/fisiología
7.
PLoS One ; 18(11): e0294113, 2023.
Artículo en Inglés | MEDLINE | ID: mdl-37971993

RESUMEN

Oxytocin (OXT) neurons project to various brain regions and its receptor expression is widely distributed. Although it has been reported that OXT administration affects cognitive function, it is unclear how endogenous OXT plays roles in cognitive function. The present study examined the role of endogenous OXT in mice cognitive function. OXT neurons were specifically activated by OXT neuron-specific excitatory Designer Receptors Exclusively Activated by Designer Drug expression system and following administration of clozapine-N-oxide (CNO). Object recognition memory was assessed with the novel object recognition task (NORT). Moreover, we observed the expression of c-Fos via immunohistochemical staining to confirm neuronal activity. In NORT, the novel object exploration time percentage significantly increased in CNO-treated mice. CNO-treated mice showed a significant increase in the number of c-Fos-positive cells in the supramammillary nucleus (SuM). In addition, we found that the OXT-positive fibers from paraventricular hypothalamic nucleus (PVN) were identified in the SuM. Furthermore, mice injected locally with CNO into the SuM to activate OXTergic axons projecting from the PVN to the SuM showed significantly increased percentage time of novel object exploration. Taken together, we proposed that object recognition memory in mice could be modulated by OXT neurons in the PVN projecting to the SuM.


Asunto(s)
Hipotálamo , Oxitocina , Animales , Ratones , Hipotálamo/metabolismo , Oxitocina/metabolismo , Núcleo Hipotalámico Paraventricular/metabolismo , Receptores de Oxitocina/metabolismo , Hipotálamo Posterior/metabolismo , Neuronas/metabolismo , Proteínas Proto-Oncogénicas c-fos/metabolismo
8.
Commun Biol ; 5(1): 12, 2022 01 10.
Artículo en Inglés | MEDLINE | ID: mdl-35013509

RESUMEN

Tissue clearing methods are increasingly essential for the microscopic observation of internal tissues of thick biological organs. We previously developed TOMEI, a clearing method for plant tissues; however, it could not entirely remove chlorophylls nor reduce the fluorescent signal of fluorescent proteins. Here, we developed an improved TOMEI method (iTOMEI) to overcome these limitations. First, a caprylyl sulfobetaine was determined to efficiently remove chlorophylls from Arabidopsis thaliana seedlings without GFP quenching. Next, a weak alkaline solution restored GFP fluorescence, which was mainly lost during fixation, and an iohexol solution with a high refractive index increased sample transparency. These procedures were integrated to form iTOMEI. iTOMEI enables the detection of much brighter fluorescence than previous methods in tissues of A. thaliana, Oryza sativa, and Marchantia polymorpha. Moreover, a mouse brain was also efficiently cleared by the iTOMEI-Brain method within 48 h, and strong fluorescent signals were detected in the cleared brain.


Asunto(s)
Arabidopsis , Botánica/métodos , Diagnóstico por Imagen/métodos , Fluorescencia , Animales , Botánica/instrumentación , Encéfalo/diagnóstico por imagen , Diagnóstico por Imagen/instrumentación , Ratones
9.
Front Pharmacol ; 13: 826783, 2022.
Artículo en Inglés | MEDLINE | ID: mdl-35330835

RESUMEN

Disulfiram is an FDA approved drug for the treatment of alcoholism. The drug acts by inhibiting aldehyde dehydrogenase, an enzyme essential to alcohol metabolism. However, a recent study has demonstrated that disulfiram also potently inhibits the cytoplasmic protein FROUNT, a common regulator of chemokine receptor CCR2 and CCR5 signaling. Several studies have reported that chemokine receptors are associated with the regulation of emotional behaviors in rodents, such as anxiety. Therefore, this study was performed to clarify the effect of disulfiram on emotional behavior in rodents. The anxiolytic-like effects of disulfiram were investigated using an elevated plus-maze (EPM) test, a typical screening model for anxiolytics. Disulfiram (40 or 80 mg/kg) significantly increased the amount of time spent in the open arms of the maze and the number of open arm entries without affecting the total open arms entries. Similar results were obtained in mice treated with a selective FROUNT inhibitor, disulfiram-41 (10 mg/kg). These disulfiram-associated behavioral changes were similar to those observed following treatment with the benzodiazepine anxiolytic diazepam (1.5 mg/kg). Moreover, disulfiram (40 mg/kg) significantly and completely attenuated increased extracellular glutamate levels in the prelimbic-prefrontal cortex (PL-PFC) during stress exposure on the elevated open-platform. However, no effect in the EPM test was seen following administration of the selective aldehyde dehydrogenase inhibitor cyanamide (40 mg/kg). In contrast to diazepam, disulfiram caused no sedation effects in the open-field, coordination disorder on a rotarod, or amnesia in a Y-maze. This is the first report suggesting that disulfiram produces anxiolytic-like effects in rodents. We found that the presynaptic inhibitory effects on glutaminergic neurons in the PL-PFC may be involved in its underlying mechanism. Disulfiram could therefore be an effective and novel anxiolytic drug that does not produce benzodiazepine-related adverse effects, such as amnesia, coordination disorder, or sedation, as found with diazepam. We propose that the inhibitory activity of disulfiram against FROUNT function provides an effective therapeutic option in anxiety.

10.
Front Mol Biosci ; 9: 1040237, 2022.
Artículo en Inglés | MEDLINE | ID: mdl-36419930

RESUMEN

The type 2 Ca2+-dependent activator protein for secretion (CAPS2/CADPS2) regulates dense-core vesicle trafficking and exocytosis and is involved in the regulated release of catecholamines, peptidergic hormones, and neuromodulators. CAPS2 is expressed in the pancreatic exocrine acinar cells that produce and secrete digestive enzymes. However, the functional role of CAPS2 in vesicular trafficking and/or exocytosis of non-regulatory proteins in the exocrine pancreas remains to be determined. Here, we analyzed the morpho-pathological indicators of the pancreatic exocrine pathway in Cadps2-deficient mouse models using histochemistry, biochemistry, and electron microscopy. We used whole exosome sequencing to identify CADPS2 variants in patients with chronic pancreatitis (CP). Caps2/Cadps2-knockout (KO) mice exhibited morphophysiological abnormalities in the exocrine pancreas, including excessive accumulation of secretory granules (zymogen granules) and their amylase content in the cytoplasm, deterioration of the fine intracellular membrane structures (disorganized rough endoplasmic reticulum, dilated Golgi cisternae, and the appearance of empty vesicles and autophagic-like vacuoles), as well as exocrine pancreatic cell injury, including acinar cell atrophy, increased fibrosis, and inflammatory cell infiltration. Pancreas-specific Cadps2 conditional KO mice exhibited pathological abnormalities in the exocrine pancreas similar to the global Cadps2 KO mice, indicating that these phenotypes were caused either directly or indirectly by CAPS2 deficiency in the pancreas. Furthermore, we identified a rare variant in the exon3 coding region of CADPS2 in a non-alcoholic patient with CP and showed that Cadps2-dex3 mice lacking CAPS2 exon3 exhibited symptoms similar to those exhibited by the Cadps2 KO and cKO mice. These results suggest that CAPS2 is critical for the proper functioning of the pancreatic exocrine pathway, and its deficiency is associated with a risk of pancreatic acinar cell pathology.

11.
Front Behav Neurosci ; 15: 680206, 2021.
Artículo en Inglés | MEDLINE | ID: mdl-34177481

RESUMEN

Rubber hand illusion (RHI), a kind of body ownership illusion, is sometimes atypical in individuals with autism spectrum disorder; however, the brain regions associated with the illusion are still unclear. We previously reported that mice responded as if their own tails were being touched when rubber tails were grasped following synchronous stroking to rubber tails and their tails (a "rubber tail illusion", RTI), which is a task based on the human RHI; furthermore, we reported that the RTI response was diminished in Ca2+-dependent activator protein for secretion 2-knockout (Caps2-KO) mice that exhibit autistic-like phenotypes. Importance of the posterior parietal cortex in the formation of illusory perception has previously been reported in human imaging studies. However, the local neural circuits and cell properties associated with this process are not clear. Therefore, we aimed to elucidate the neural basis of the RTI response and its impairment by investigating the c-Fos expression in both wild-type (WT) and Caps2-KO mice during the task since the c-Fos expression occurred soon after the neural activation. Immediately following the delivery of the synchronous stroking to both rubber tails and actual tails, the mice were perfused. Subsequently, whole brains were cryo-sectioned, and each section was immunostained with anti-c-Fos antibody; finally, c-Fos positive cell densities among the groups were compared. The c-Fos expression in the posterior parietal cortex was significantly lower in the Caps2-KO mice than in the WT mice. Additionally, we compared the c-Fos expression in the WT mice between synchronous and asynchronous conditions and found that the c-Fos-positive cell densities were significantly higher in the claustrum and primary somatosensory cortex of the WT mice exposed to the synchronous condition than those exposed to the asynchronous condition. Hence, the results suggest that decreased c-Fos expression in the posterior parietal cortex may be related to impaired multisensory integrations in Caps2-KO mice.

12.
Annu Int Conf IEEE Eng Med Biol Soc ; 2021: 7252-7255, 2021 11.
Artículo en Inglés | MEDLINE | ID: mdl-34892772

RESUMEN

The mouse is a valuable animal model to address the neural mechanism of higher brain function and test the pharmacodynamics of new drugs. The development of novel behavioral analysis to detect subtleties of emotion is valuable for the evolution of neuroscience research and drug discovery. 3D pose estimation is expected to contribute significantly to them. Several methods for 3D pose estimation of the mouse using optical motion capture with markers and multiple cameras have been proposed, but these methods have problems such as preparing marker sets and the influence of the markers on mouse behavior. A low-cost and simple method for markerless 3D pose estimation of the mouse using a single RGB-D (Depth) camera is proposed. As a result, the proposed method improved the accuracy of limbs tracking compared to existing limbs tracking methods. In addition, this method could track other body parts (nose, base of tail) and the center of gravity.Clinical Relevance-This study could contribute to the development of neuroscience research and drug discovery by clarifying the relationship between subtle changes in mouse behavior and emotional movements.


Asunto(s)
Algoritmos , Cuerpo Humano , Animales , Extremidades , Ratones , Movimiento (Física) , Movimiento
13.
Sci Rep ; 11(1): 8656, 2021 04 21.
Artículo en Inglés | MEDLINE | ID: mdl-33883618

RESUMEN

Calcium-dependent activator protein for secretion 1 (CAPS1) is a key molecule in vesicular exocytosis, probably in the priming step. However, CAPS1's role in synaptic plasticity and brain function is elusive. Herein, we showed that synaptic plasticity and learning behavior were impaired in forebrain and/or hippocampus-specific Caps1 conditional knockout (cKO) mice by means of molecular, physiological, and behavioral analyses. Neonatal Caps1 cKO mice showed a decrease in the number of docked vesicles in the hippocampal CA3 region, with no detectable changes in the distribution of other major exocytosis-related molecules. Additionally, long-term potentiation (LTP) was partially and severely impaired in the CA1 and CA3 regions, respectively. CA1 LTP was reinforced by repeated high-frequency stimuli, whereas CA3 LTP was completely abolished. Accordingly, hippocampus-associated learning was severely impaired in adeno-associated virus (AAV) infection-mediated postnatal Caps1 cKO mice. Collectively, our findings suggest that CAPS1 is a key protein involved in the cellular mechanisms underlying hippocampal synaptic release and plasticity, which is crucial for hippocampus-associated learning.


Asunto(s)
Proteínas de Unión al Calcio/fisiología , Hipocampo/fisiología , Aprendizaje/fisiología , Proteínas del Tejido Nervioso/fisiología , Plasticidad Neuronal/fisiología , Animales , Western Blotting , Proteínas de Unión al Calcio/metabolismo , Condicionamiento Clásico , Aprendizaje Discriminativo , Femenino , Hipocampo/metabolismo , Hipocampo/ultraestructura , Masculino , Ratones , Ratones Endogámicos C57BL , Ratones Noqueados , Microscopía Electrónica , Proteínas del Tejido Nervioso/metabolismo , Fracciones Subcelulares/metabolismo
14.
Mol Brain ; 14(1): 52, 2021 03 12.
Artículo en Inglés | MEDLINE | ID: mdl-33712038

RESUMEN

The HapMap Project is a major international research effort to construct a resource to facilitate the discovery of relationships between human genetic variations and health and disease. The Ser19Stop single nucleotide polymorphism (SNP) of human phytanoyl-CoA hydroxylase-interacting protein-like (PHYHIPL) gene was detected in HapMap project and registered in the dbSNP. PHYHIPL gene expression is altered in global ischemia and glioblastoma multiforme. However, the function of PHYHIPL is unknown. We generated PHYHIPL Ser19Stop knock-in mice and found that PHYHIPL impacts the morphology of cerebellar Purkinje cells (PCs), the innervation of climbing fibers to PCs, the inhibitory inputs to PCs from molecular layer interneurons, and motor learning ability. Thus, the Ser19Stop SNP of the PHYHIPL gene may be associated with cerebellum-related diseases.


Asunto(s)
Cerebelo/citología , Péptidos y Proteínas de Señalización Intracelular/genética , Polimorfismo de Nucleótido Simple , Células de Purkinje/ultraestructura , Secuencia de Aminoácidos , Animales , Sistemas CRISPR-Cas , Forma de la Célula , Codón de Terminación , Femenino , Técnicas de Sustitución del Gen , Proyecto Mapa de Haplotipos , Humanos , Interneuronas/fisiología , Péptidos y Proteínas de Señalización Intracelular/fisiología , Aprendizaje , Ratones , Ratones Endogámicos C57BL , Ratones Transgénicos , Actividad Motora , Fibras Nerviosas/fisiología , Células de Purkinje/metabolismo , Prueba de Desempeño de Rotación con Aceleración Constante , Alineación de Secuencia , Homología de Secuencia de Aminoácido
15.
Sci Rep ; 11(1): 9749, 2021 05 12.
Artículo en Inglés | MEDLINE | ID: mdl-33980877

RESUMEN

Conjugated linoleic acid (CLA) is an isomer of linoleic acid (LA). The predominant dietary CLA is cis-9, trans-11-CLA (c-9, t-11-CLA), which constitutes up to ~ 90% of total CLA and is thought to be responsible for the positive health benefits associated with CLA. However, the effects of c-9, t-11-CLA on Alzheimer's disease (AD) remain to be elucidated. In this study, we investigated the effect of dietary intake of c-9, t-11-CLA on the pathogenesis of an AD mouse model. We found that c-9, t-11-CLA diet-fed AD model mice significantly exhibited (1) a decrease in amyloid-ß protein (Aß) levels in the hippocampus, (2) an increase in the number of microglia, and (3) an increase in the number of astrocytes expressing the anti-inflammatory cytokines, interleukin-10 and 19 (IL-10, IL-19), with no change in the total number of astrocytes. In addition, liquid chromatography-tandem mass spectrometry (LC-MS/MS) and gas chromatographic analysis revealed that the levels of lysophosphatidylcholine (LPC) containing c-9, t-11-CLA (CLA-LPC) and free c-9, t-11-CLA were significantly increased in the brain of c-9, t-11-CLA diet-fed mice. Thus, dietary c-9, t-11-CLA entered the brain and appeared to exhibit beneficial effects on AD, including a decrease in Aß levels and suppression of inflammation.


Asunto(s)
Enfermedad de Alzheimer/dietoterapia , Péptidos beta-Amiloides/metabolismo , Citocinas/metabolismo , Grasas Insaturadas en la Dieta/uso terapéutico , Ácidos Linoleicos Conjugados/uso terapéutico , Enfermedad de Alzheimer/metabolismo , Enfermedad de Alzheimer/patología , Péptidos beta-Amiloides/análisis , Animales , Citocinas/análisis , Modelos Animales de Enfermedad , Humanos , Ratones , Ratones Endogámicos C57BL
16.
J Neurosci ; 29(18): 5884-96, 2009 May 06.
Artículo en Inglés | MEDLINE | ID: mdl-19420255

RESUMEN

Understanding how emotion is generated, how conflicting emotions are regulated, and how emotional states relate to sophisticated behaviors is a crucial challenge in brain research. Model animals showing selective emotion-related phenotypes are highly useful for examining these issues. Here, we describe a novel mouse model that withdraws in approach-avoidance conflicts. X11-like (X11L)/Mint2 is a neuronal adapter protein with multiple protein-protein interaction domains that interacts with several proteins involved in modulating neuronal activity. X11L-knock-out (KO) mice were subordinate under competitive feeding conditions. X11L-KO mice lost significantly more weight than cohoused wild-type mice without signs of decreased motivation to eat or physical weakness. In a resident-intruder test, X11L-KO mice showed decreased intruder exploration behavior. Moreover, X11L-KO mice displayed decreased marble-burying, digging and burrowing behaviors, indicating aberrant ethological responses to attractive stimuli. In contrast, X11L-KO mice were indistinguishable from wild-type mice in the open field, elevated plus maze, and light/dark transition tests, which are often used to assess anxiety-like behavior. Neurochemical analysis revealed a monoamine imbalance in several forebrain regions. The defective ethological responses and social behaviors in X11L-KO mice were rescued by the expression of X11L under a Camk2a promoter using the Tet-OFF system during development. These findings suggest that X11L is involved in the development of neuronal circuits that contribute to conflict resolution.


Asunto(s)
Reacción de Prevención/fisiología , Cadherinas/deficiencia , Conducta Competitiva/fisiología , Conflicto Psicológico , Proteínas del Tejido Nervioso/deficiencia , 8-Hidroxi-2-(di-n-propilamino)tetralin/farmacología , Adaptación Psicológica/fisiología , Análisis de Varianza , Animales , Ansiedad/genética , Conducta Animal/fisiología , Monoaminas Biogénicas/metabolismo , Peso Corporal/genética , Proteína Quinasa Tipo 2 Dependiente de Calcio Calmodulina/genética , Proteínas Portadoras , Relación Dosis-Respuesta a Droga , Doxorrubicina/farmacología , Conducta de Ingestión de Líquido/efectos de los fármacos , Conducta de Ingestión de Líquido/fisiología , Ingestión de Alimentos/genética , Conducta Exploratoria/fisiología , Conducta Alimentaria/fisiología , Galactósidos/metabolismo , Fuerza de la Mano/fisiología , Hipotermia Inducida , Relaciones Interpersonales , Masculino , Aprendizaje por Laberinto/fisiología , Ratones , Ratones Endogámicos C57BL , Ratones Transgénicos , Actividad Motora/genética , Señales de Localización Nuclear/genética , Prosencéfalo/metabolismo , Dominios y Motivos de Interacción de Proteínas , Estadísticas no Paramétricas , Factores de Tiempo
17.
Neurosci Lett ; 738: 135335, 2020 11 01.
Artículo en Inglés | MEDLINE | ID: mdl-32891671

RESUMEN

Proopiomelanocortin (POMC) is a neuropeptide precursor produced in the anterior and intermediate pituitary lobes, the hypothalamic arcuate nucleus (ARC), and solitary tract nucleus. Alpha-melanocyte-stimulating hormone (α-MSH) is a cell type specific POMC derivative that is essential for regulating feeding, and energy homeostasis. However, the molecular mechanism underlying POMC/α-MSH secretion remains unclear. Ca2+-dependent activator protein for secretion 2 (CAPS2) is a regulatory protein involved in the exocytosis of dense-core vesicles containing neuropeptides. We previously reported CAPS2 localization in the intermediate pituitary lobe and reduced body weights in Caps2-knockout (Caps2-KO) mice, compared to control mice. Here, we aimed to investigate CAPS2 expression in POMC-expressing neurons and the effects of CAPS2 deficiency on the secretion of POMC-related peptides and feeding behavior phenotype. CAPS2 was localized in the POMC-expressing neurons of the intermediate pituitary lobe, hypothalamic ARC, and the paraventricular nucleus, which is innervated by hypothalamic neurons. POMC protein levels in the intermediate pituitary lobe of Caps2-KO mice were significantly higher than that in the control mice, suggesting a possible accumulation of POMC-derived peptides in the intermediate pituitary lobe of Caps2-KO mice. Moreover, administration of low-dose melanotan-2, an α-MSH receptor (MC4R) agonist, decreased food intake per body weight in Caps2-KO mice; no such effect was observed in the wildtype mice. Collectively, these results suggest that CAPS2 is involved in regulating the secretion of POMC-derived peptides, including α-MSH, is partially associated with feeding, and affects energy metabolism.


Asunto(s)
Proteínas de Unión al Calcio/genética , Ingestión de Alimentos/genética , Hipotálamo/metabolismo , Proteínas del Tejido Nervioso/genética , Hipófisis/metabolismo , Proopiomelanocortina/metabolismo , Animales , Peso Corporal/efectos de los fármacos , Peso Corporal/genética , Proteínas de Unión al Calcio/metabolismo , Ingestión de Alimentos/efectos de los fármacos , Hipotálamo/efectos de los fármacos , Masculino , Ratones , Ratones Noqueados , Proteínas del Tejido Nervioso/metabolismo , Neuronas/metabolismo , Péptidos Cíclicos/farmacología , Hipófisis/efectos de los fármacos , alfa-MSH/análogos & derivados , alfa-MSH/farmacología
18.
Mol Brain ; 13(1): 107, 2020 07 28.
Artículo en Inglés | MEDLINE | ID: mdl-32723372

RESUMEN

The insular cortex (IC) is the primary gustatory cortex, and it is a critical structure for encoding and retrieving the conditioned taste aversion (CTA) memory. In the CTA, consumption of an appetitive tastant is associated with aversive experience such as visceral malaise, which results in avoidance of consuming a learned tastant. Previously, we showed that levels of the cyclic-AMP-response-element-binding protein (CREB) determine the insular cortical neurons that proceed to encode a conditioned taste memory. In the amygdala and hippocampus, it is shown that CREB and neuronal activity regulate memory allocation and the neuronal mechanism that determines the specific neurons in a neural network that will store a given memory. However, cellular mechanism of memory allocation in the insular cortex is not fully understood. In the current study, we manipulated the neuronal activity in a subset of insular cortical and/or basolateral amygdala (BLA) neurons in mice, at the time of learning; for this purpose, we used an hM3Dq designer receptor exclusively activated by a designer drug system (DREADD). Subsequently, we examined whether the neuronal population whose activity is increased during learning, is reactivated by memory retrieval, using the expression of immediate early gene c-fos. When an hM3Dq receptor was activated only in a subset of IC neurons, c-fos expression following memory retrieval was not significantly observed in hM3Dq-positive neurons. Interestingly, the probability of c-fos expression in hM3Dq-positive IC neurons after retrieval was significantly increased when the IC and BLA were co-activated during conditioning. Our findings suggest that functional interactions between the IC and BLA regulates CTA memory allocation in the insular cortex, which shed light on understanding the mechanism of memory allocation regulated by interaction between relevant brain areas.


Asunto(s)
Amígdala del Cerebelo/fisiología , Corteza Cerebral/fisiología , Recuerdo Mental/fisiología , Neuronas/fisiología , Gusto/fisiología , Animales , Reacción de Prevención/fisiología , Condicionamiento Clásico , Aprendizaje , Masculino , Ratones Endogámicos C57BL , Red Nerviosa
19.
Front Cell Neurosci ; 14: 595607, 2020.
Artículo en Inglés | MEDLINE | ID: mdl-33362469

RESUMEN

Mouse line BTBR T+ Iptr3 tf /J (hereafter referred as to BTBR/J) is a mouse strain that shows lower sociability compared to the C57BL/6J mouse strain (B6) and thus is often utilized as a model for autism spectrum disorder (ASD). In this study, we utilized another subline, BTBRTF/ArtRbrc (hereafter referred as to BTBR/R), and analyzed the associated brain transcriptome compared to B6 mice using microarray analysis, quantitative RT-PCR analysis, various bioinformatics analyses, and in situ hybridization. We focused on the cerebral cortex and the striatum, both of which are thought to be brain circuits associated with ASD symptoms. The transcriptome profiling identified 1,280 differentially expressed genes (DEGs; 974 downregulated and 306 upregulated genes, including 498 non-coding RNAs [ncRNAs]) in BTBR/R mice compared to B6 mice. Among these DEGs, 53 genes were consistent with ASD-related genes already established. Gene Ontology (GO) enrichment analysis highlighted 78 annotations (GO terms) including DNA/chromatin regulation, transcriptional/translational regulation, intercellular signaling, metabolism, immune signaling, and neurotransmitter/synaptic transmission-related terms. RNA interaction analysis revealed novel RNA-RNA networks, including 227 ASD-related genes. Weighted correlation network analysis highlighted 10 enriched modules including DNA/chromatin regulation, neurotransmitter/synaptic transmission, and transcriptional/translational regulation. Finally, the behavioral analyses showed that, compared to B6 mice, BTBR/R mice have mild but significant deficits in social novelty recognition and repetitive behavior. In addition, the BTBR/R data were comprehensively compared with those reported in the previous studies of human subjects with ASD as well as ASD animal models, including BTBR/J mice. Our results allow us to propose potentially important genes, ncRNAs, and RNA interactions. Analysis of the altered brain transcriptome data of the BTBR/R and BTBR/J sublines can contribute to the understanding of the genetic underpinnings of autism susceptibility.

20.
Sci Rep ; 10(1): 8613, 2020 05 25.
Artículo en Inglés | MEDLINE | ID: mdl-32451463

RESUMEN

Animals can remember a situation associated with an aversive event. Contextual fear memory is initially encoded and consolidated in the hippocampus and gradually consolidated in multiple brain regions over time, including the medial prefrontal cortex (PFC). However, it is not fully understood how PFC neurons contribute to contextual fear memory formation during learning. In the present study, neuronal activity was increased in PFC neurons utilizing the pharmacogenetic hM3Dq-system in male mice. We show that fear expression and memory formation are enhanced by increasing neuronal activity in PFC during conditioning phase. Previous studies showed that the activation of hM3Dq receptor in a subset of amygdala neurons enhanced fear memory formation and biased which neurons are allocated to a memory trace, in which immediate early gene c-fos was preferentially expressed following memory retrieval in these pre-activated neurons. In this study, hM3Dq activation in PFC could not change the probability of c-fos expression in pre-activated neurons flowing memory retrieval. Instead, the number c-fos positive neurons following memory retrieval was significantly increased in the basolateral amygdala. Our results suggest that neuronal activity in PFC at the time of learning modulates fear memory formation and downstream cellular activity at an early phase.


Asunto(s)
Miedo , Memoria , Neuronas/metabolismo , Corteza Prefrontal/metabolismo , Animales , Complejo Nuclear Basolateral/metabolismo , Condicionamiento Clásico , Humanos , Masculino , Ratones , Ratones Endogámicos C57BL , Proteínas Proto-Oncogénicas c-fos/metabolismo , Receptor Muscarínico M3/genética , Receptor Muscarínico M3/metabolismo
SELECCIÓN DE REFERENCIAS
DETALLE DE LA BÚSQUEDA