Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 4 de 4
Filtrar
1.
PLoS Genet ; 15(1): e1007926, 2019 01.
Artículo en Inglés | MEDLINE | ID: mdl-30677014

RESUMEN

How cells communicate to initiate a regenerative response after damage has captivated scientists during the last few decades. It is known that one of the main signals emanating from injured cells is the Reactive Oxygen Species (ROS), which propagate to the surrounding tissue to trigger the replacement of the missing cells. However, the link between ROS production and the activation of regenerative signaling pathways is not yet fully understood. We describe here the non-autonomous ROS sensing mechanism by which living cells launch their regenerative program. To this aim, we used Drosophila imaginal discs as a model system due to its well-characterized regenerative ability after injury or cell death. We genetically-induced cell death and found that the Apoptosis signal-regulating kinase 1 (Ask1) is essential for regenerative growth. Ask1 senses ROS both in dying and living cells, but its activation is selectively attenuated in living cells by Akt1, the core kinase component of the insulin/insulin-like growth factor pathway. Akt1 phosphorylates Ask1 in a secondary site outside the kinase domain, which attenuates its activity. This modulation of Ask1 activity results in moderate levels of JNK signaling in the living tissue, as well as in activation of p38 signaling, both pathways required to turn on the regenerative response. Our findings demonstrate a non-autonomous activation of a ROS sensing mechanism by Ask1 and Akt1 to replace the missing tissue after damage. Collectively, these results provide the basis for understanding the molecular mechanism of communication between dying and living cells that triggers regeneration.


Asunto(s)
Proteínas de Drosophila/genética , Discos Imaginales/crecimiento & desarrollo , Quinasas Quinasa Quinasa PAM/genética , Proteínas Proto-Oncogénicas c-akt/genética , Regeneración/genética , Animales , Apoptosis/genética , Comunicación Celular/genética , Proliferación Celular/genética , Drosophila melanogaster/genética , Drosophila melanogaster/crecimiento & desarrollo , Drosophila melanogaster/metabolismo , Humanos , Discos Imaginales/metabolismo , Especies Reactivas de Oxígeno/metabolismo , Transducción de Señal/genética
2.
PLoS Genet ; 11(10): e1005595, 2015 Oct.
Artículo en Inglés | MEDLINE | ID: mdl-26496642

RESUMEN

Upon apoptotic stimuli, epithelial cells compensate the gaps left by dead cells by activating proliferation. This has led to the proposal that dying cells signal to surrounding living cells to maintain homeostasis. Although the nature of these signals is not clear, reactive oxygen species (ROS) could act as a signaling mechanism as they can trigger pro-inflammatory responses to protect epithelia from environmental insults. Whether ROS emerge from dead cells and what is the genetic response triggered by ROS is pivotal to understand regeneration of Drosophila imaginal discs. We genetically induced cell death in wing imaginal discs, monitored the production of ROS and analyzed the signals required for repair. We found that cell death generates a burst of ROS that propagate to the nearby surviving cells. Propagated ROS activate p38 and induce tolerable levels of JNK. The activation of JNK and p38 results in the expression of the cytokines Unpaired (Upd), which triggers the JAK/STAT signaling pathway required for regeneration. Our findings demonstrate that this ROS/JNK/p38/Upd stress responsive module restores tissue homeostasis. This module is not only activated after cell death induction but also after physical damage and reveals one of the earliest responses for imaginal disc regeneration.


Asunto(s)
Proteínas de Drosophila/genética , Proteínas Quinasas JNK Activadas por Mitógenos/genética , Regeneración/genética , Factores de Transcripción/genética , Proteínas Quinasas p38 Activadas por Mitógenos/genética , Animales , Apoptosis/genética , Proliferación Celular/genética , Proteínas de Drosophila/biosíntesis , Drosophila melanogaster/genética , Drosophila melanogaster/crecimiento & desarrollo , Regulación del Desarrollo de la Expresión Génica , Discos Imaginales/crecimiento & desarrollo , Proteínas Quinasas JNK Activadas por Mitógenos/biosíntesis , Especies Reactivas de Oxígeno/metabolismo , Transducción de Señal , Estrés Fisiológico/genética , Factores de Transcripción/biosíntesis , Alas de Animales/crecimiento & desarrollo , Proteínas Quinasas p38 Activadas por Mitógenos/biosíntesis
3.
Cells ; 11(16)2022 08 16.
Artículo en Inglés | MEDLINE | ID: mdl-36010619

RESUMEN

The loss-of-function conditions for an l(3)malignant brain tumour (l(3)mbt) in larvae reared at 29 °C results in malignant brain tumours and hyperplastic imaginal discs. Unlike the former that have been extensively characterised, little is known about the latter. Here we report the results of a study of the hyperplastic l(3)mbt mutant wing imaginal discs. We identify the l(3)mbt wing disc tumour transcriptome and find it to include genes involved in reactive oxygen species (ROS) metabolism. Furthermore, we show the presence of oxidative stress in l(3)mbt hyperplastic discs, even in apoptosis-blocked conditions, but not in l(3)mbt brain tumours. We also find that chemically blocking oxidative stress in l(3)mbt wing discs reduces the incidence of wing disc overgrowths. Our results reveal the involvement of oxidative stress in l(3)mbt wing discs hyperplastic growth.


Asunto(s)
Proteínas de Drosophila , Discos Imaginales , Animales , Drosophila/metabolismo , Proteínas de Drosophila/metabolismo , Discos Imaginales/metabolismo , Estrés Oxidativo , Alas de Animales/metabolismo
4.
Dev Cell ; 56(19): 2741-2751.e7, 2021 10 11.
Artículo en Inglés | MEDLINE | ID: mdl-34610327

RESUMEN

Cancer cachexia is associated with many types of tumors and is characterized by a combination of anorexia, loss of body weight, catabolic alterations, and systemic inflammation. We developed a tumor model in Drosophila larvae that causies cachexia-like syndrome, and we found that cachectic larvae show reduced levels of the circulating steroid ecdysone (Ec). Artificially importing Ec in the tumor through the use of the EcI/Oatp74D importer aggravated cachexia, whereas feeding animals with Ec rescued cachectic defects. This suggests that a steroid sink induced by the tumor promotes catabolic alterations in healthy tissues. We found that Oatp33Eb, a member of the Oatp transporter family, is specifically induced in tumors promoting cachexia. The overexpression of Oatp33Eb in noncachectic tumors induced cachexia, whereas its inhibition in cachectic tumors restored circulating Ec and reversed cachectic alterations. Oatp transporters are induced in several types of hormone-dependent tumors, and this result suggests that a similar sink effect could modify hormonal balance in cachectic cancer patients.


Asunto(s)
Caquexia/metabolismo , Ecdisona/metabolismo , Transportadores de Anión Orgánico/metabolismo , Animales , Peso Corporal , Caquexia/fisiopatología , Proteínas de Drosophila , Drosophila melanogaster , Larva/metabolismo , Neoplasias , Transportadores de Anión Orgánico/fisiología , Esteroides/metabolismo
SELECCIÓN DE REFERENCIAS
DETALLE DE LA BÚSQUEDA