Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 18 de 18
Filtrar
1.
J Biol Chem ; 299(10): 105203, 2023 Oct.
Artículo en Inglés | MEDLINE | ID: mdl-37660911

RESUMEN

Transcription/processing of the ribosomal RNA (rRNA) precursor, as part of ribosome biosynthesis, is intensively studied and characterized in eukaryotic cells. Here, we constructed shRNA-based mouse cell lines partially silenced for the Upstream Binding Factor UBF, the master regulator of rRNA transcription and organizer of open rDNA chromatin. Full Ubf silencing in vivo is not viable, and these new tools allow further characterization of rRNA transcription and its coordination with cellular signaling. shUBF cells display cell cycle G1 delay and reduced 47S rRNA precursor and 28S rRNA at baseline and serum-challenged conditions. Growth-related mTOR signaling is downregulated with the fractions of active phospho-S6 Kinase and pEIF4E translation initiation factor reduced, similar to phosphorylated cell cycle regulator retinoblastoma, pRB, positive regulator of UBF availability/rRNA transcription. Additionally, we find transcription-competent pUBF (Ser484) severely restricted and its interacting initiation factor RRN3 reduced and responsive to extracellular cues. Furthermore, fractional UBF occupancy on the rDNA unit is decreased in shUBF, and expression of major factors involved in different aspects of rRNA transcription is severely downregulated by UBF depletion. Finally, we observe reduced RNA Pol1 occupancy over rDNA promoter sequences and identified unexpected regulation of RNA Pol1 expression, relative to serum availability and under UBF silencing, suggesting that regulation of rRNA transcription may not be restricted to modulation of Pol1 promoter binding/elongation rate. Overall, this work reveals that UBF depletion has a critical downstream and upstream impact on the whole network orchestrating rRNA transcription in mammalian cells.

2.
J Cell Sci ; 133(16)2020 08 21.
Artículo en Inglés | MEDLINE | ID: mdl-32694168

RESUMEN

The structurally and functionally complex endoplasmic reticulum (ER) hosts critical processes including lipid synthesis. Here, we focus on the functional characterization of transmembrane protein TMEM147, and report that it localizes at the ER and nuclear envelope in HeLa cells. Silencing of TMEM147 drastically reduces the level of lamin B receptor (LBR) at the inner nuclear membrane and results in mistargeting of LBR to the ER. LBR possesses a modular structure and corresponding bifunctionality, acting in heterochromatin organization via its N-terminus and in cholesterol biosynthesis via its sterol-reductase C-terminal domain. We show that TMEM147 physically interacts with LBR, and that the C-terminus of LBR is essential for their functional interaction. We find that TMEM147 also physically interacts with the key sterol reductase DHCR7, which is involved in cholesterol biosynthesis. Similar to what was seen for LBR, TMEM147 downregulation results in a sharp decline of DHCR protein levels and co-ordinate transcriptional decreases of LBR and DHCR7 expression. Consistent with this, lipidomic analysis upon TMEM147 silencing identified changes in cellular cholesterol levels, cholesteryl ester levels and profile, and in cellular cholesterol uptake, raising the possibility that TMEM147 is an important new regulator of cholesterol homeostasis in cells.This article has an associated First Person interview with the first author of the paper.


Asunto(s)
Membrana Nuclear , Receptores Citoplasmáticos y Nucleares , Colesterol , Células HeLa , Homeostasis , Humanos , Proteínas de la Membrana , Proteínas del Tejido Nervioso , Membrana Nuclear/genética , Receptores Citoplasmáticos y Nucleares/genética , Receptor de Lamina B
3.
Int J Mol Sci ; 22(19)2021 Sep 23.
Artículo en Inglés | MEDLINE | ID: mdl-34638576

RESUMEN

Nuclear envelope (NE) and endoplasmic reticulum (ER) collaborate to control a multitude of nuclear and cytoplasmic actions. In this context, the transmembrane protein TMEM147 localizes to both NE and ER, and through direct and indirect interactions regulates processes as varied as production and transport of multipass membrane proteins, neuronal signaling, nuclear-shape, lamina and chromatin dynamics and cholesterol synthesis. Aiming to delineate the emerging multifunctionality of TMEM147 more comprehensively, we set as objectives, first, to assess potentially more fundamental effects of TMEM147 on the ER and, second, to identify significantly TMEM147-associated cell-wide protein networks and pathways. Quantifying curved and flat ER markers RTN4 and CLIMP63/CKAP4, respectively, we found that TMEM147 silencing causes area and intensity increases for both RTN4 and CLIMP63, and the ER in general, with a profound shift toward flat areas, concurrent with reduction in DNA condensation. Protein network and pathway analyses based on comprehensive compilation of TMEM147 interactors, targets and co-factors then served to manifest novel and established roles for TMEM147. Thus, algorithmically simplified significant pathways reflect TMEM147 function in ribosome binding, oxidoreductase activity, G protein-coupled receptor activity and transmembrane transport, while analysis of protein factors and networks identifies hub proteins and corresponding pathways as potential targets of TMEM147 action and of future functional studies.


Asunto(s)
Retículo Endoplásmico/química , Retículo Endoplásmico/metabolismo , Proteínas de la Membrana/genética , Proteínas de la Membrana/fisiología , Membrana Nuclear/química , Membrana Nuclear/metabolismo , Retículo Endoplásmico/ultraestructura , Silenciador del Gen , Células HeLa , Humanos , Proteínas de la Membrana/metabolismo , Proteínas Nogo/metabolismo , Mapas de Interacción de Proteínas , Receptores Citoplasmáticos y Nucleares/metabolismo , Transducción de Señal , Receptor de Lamina B
4.
Dev Biol ; 442(2): 276-287, 2018 10 15.
Artículo en Inglés | MEDLINE | ID: mdl-30096282

RESUMEN

Microtubule remodeling is critical for cellular and developmental processes underlying morphogenetic changes and for the formation of many subcellular structures. Katanins are conserved microtubule severing enzymes that are essential for spindle assembly, ciliogenesis, cell division, and cellular motility. We have recently shown that a related protein, Katanin-like 2 (KATNAL2), is similarly required for cytokinesis, cell cycle progression, and ciliogenesis in cultured mouse cells. However, its developmental expression pattern, localization, and in vivo role during organogenesis have yet to be characterized. Here, we used Xenopus embryos to reveal that Katnal2 (1) is expressed broadly in ciliated and neurogenic tissues throughout embryonic development; (2) is localized to basal bodies, ciliary axonemes, centrioles, and mitotic spindles; and (3) is required for ciliogenesis and brain development. Since human KATNAL2 is a risk gene for autism spectrum disorders, our functional data suggest that Xenopus may be a relevant system for understanding the relationship of mutations in this gene to autism and the underlying molecular mechanisms of pathogenesis.


Asunto(s)
Encéfalo/embriología , Encéfalo/metabolismo , Katanina/metabolismo , Animales , Ciclo Celular/fisiología , División Celular/fisiología , Cilios/metabolismo , Embrión no Mamífero , Desarrollo Embrionario , Microtúbulos/metabolismo , Huso Acromático/metabolismo , Xenopus/embriología , Xenopus/metabolismo , Proteínas de Xenopus/metabolismo
5.
J Cell Sci ; 129(8): 1552-65, 2016 Apr 15.
Artículo en Inglés | MEDLINE | ID: mdl-26906412

RESUMEN

The mechanism of endoplasmic reticulum (ER) morphogenesis is incompletely understood. ER tubules are shaped by the reticulons (RTNs) and DP1/Yop1p family members, but the mechanism of ER sheet formation is much less clear. Here, we characterize TMEM170A, a human transmembrane protein, which localizes in ER and nuclear envelope membranes. Silencing or overexpressing TMEM170A in HeLa K cells alters ER shape and morphology. Ultrastructural analysis reveals that downregulation of TMEM170A specifically induces tubular ER formation, whereas overexpression of TMEM170A induces ER sheet formation, indicating that TMEM170A is a newly discovered ER-sheet-promoting protein. Additionally, downregulation of TMEM170A alters nuclear shape and size, decreases the density of nuclear pore complexes (NPCs) in the nuclear envelope and causes either a reduction in inner nuclear membrane (INM) proteins or their relocalization to the ER. TMEM170A interacts with RTN4, a member of the reticulon family; simultaneous co-silencing of TMEM170A and RTN4 rescues ER, NPC and nuclear-envelope-related phenotypes, implying that the two proteins have antagonistic effects on ER membrane organization, and nuclear envelope and NPC formation.


Asunto(s)
Retículo Endoplásmico/fisiología , Proteínas de la Membrana/metabolismo , Proteínas Nogo/metabolismo , Membrana Nuclear/metabolismo , Células HeLa , Humanos , Proteínas de la Membrana/genética , Proteínas Nogo/genética , Poro Nuclear/metabolismo , Transporte de Proteínas/genética , ARN Interferente Pequeño/genética , Transgenes
6.
Cell Mol Life Sci ; 73(1): 163-84, 2016 Jan.
Artículo en Inglés | MEDLINE | ID: mdl-26153462

RESUMEN

Katanins are microtubule (MT)-severing AAA proteins with high phylogenetic conservation throughout the eukaryotes. They have been functionally implicated in processes requiring MT remodeling, such as spindle assembly in mitosis and meiosis, assembly/disassembly of flagella and cilia and neuronal morphogenesis. Here, we uncover a novel family of katanin-like 2 proteins (KATNAL2) in mouse, consisting of five alternatively spliced isoforms encoded by the Katnal2 genomic locus. We further demonstrate that in vivo these isoforms are able to interact with themselves, with each other and moreover directly and independently with MRP/MinD-type P-loop NTPases Nubp1 and Nubp2, which are integral components of centrioles, negative regulators of ciliogenesis and implicated in centriole duplication in mammalian cells. We find KATNAL2 localized on interphase MTs, centrioles, mitotic spindle, midbody and the axoneme and basal body of sensory cilia in cultured murine cells. shRNAi of Katnal2 results in inefficient cytokinesis and severe phenotypes of enlarged cells and nuclei, increased numbers of centrioles and the manifestation of aberrant multipolar mitotic spindles, mitotic defects, chromosome bridges, multinuclearity, increased MT acetylation and an altered cell cycle pattern. Silencing or stable overexpression of KATNAL2 isoforms drastically reduces ciliogenesis. In conclusion, KATNAL2s are multitasking enzymes involved in the same cell type in critically important processes affecting cytokinesis, MT dynamics, and ciliogenesis and are also implicated in cell cycle progression.


Asunto(s)
Adenosina Trifosfatasas/metabolismo , Proteínas de Unión al GTP/metabolismo , Microtúbulos/metabolismo , Mapas de Interacción de Proteínas , Adenosina Trifosfatasas/análisis , Adenosina Trifosfatasas/genética , Animales , Ciclo Celular , Centrosoma/metabolismo , Centrosoma/ultraestructura , Cilios/metabolismo , Cilios/ultraestructura , Citocinesis , Proteínas de Unión al GTP/análisis , Silenciador del Gen , Interfase , Péptidos y Proteínas de Señalización Intracelular , Katanina , Ratones , Microtúbulos/ultraestructura , Células 3T3 NIH , Isoformas de Proteínas/análisis , Isoformas de Proteínas/genética , Isoformas de Proteínas/metabolismo , Huso Acromático/metabolismo , Huso Acromático/ultraestructura , Regulación hacia Arriba
7.
Cell Mol Life Sci ; 71(3): 517-38, 2014 Feb.
Artículo en Inglés | MEDLINE | ID: mdl-23807208

RESUMEN

Nucleotide-binding proteins Nubp1 and Nubp2 are MRP/MinD-type P-loop NTPases with sequence similarity to bacterial division site-determining proteins and are conserved, essential proteins throughout the Eukaryotes. They have been implicated, together with their interacting minus-end directed motor protein KIFC5A, in the regulation of centriole duplication in mammalian cells. Here we show that Nubp1 and Nubp2 are integral components of centrioles throughout the cell cycle, recruited independently of KIFC5A. We further demonstrate their localization at the basal body of the primary cilium in quiescent vertebrate cells or invertebrate sensory cilia, as well as in the motile cilia of mouse cells and in the flagella of Chlamydomonas. RNAi-mediated silencing of nubp-1 in C. elegans causes the formation of morphologically aberrant and additional cilia in sensory neurons. Correspondingly, downregulation of Nubp1 or Nubp2 in mouse quiescent NIH 3T3 cells markedly increases the number of ciliated cells, while knockdown of KIFC5A dramatically reduces ciliogenesis. Simultaneous double silencing of Nubp1 + KIFC5A restores the percentage of ciliated cells to control levels. We document the normal ciliary recruitment, during these silencing regimes, of basal body proteins critical for ciliogenesis, namely CP110, CEP290, cenexin, Chibby, AurA, Rab8, and BBS7. Interestingly, we uncover novel interactions of Nubp1 with several members of the CCT/TRiC molecular chaperone complex, which we find enriched at the basal body and recruited independently of the Nubps or KIFC5A. Our combined results for Nubp1, Nubp2, and KIFC5A and their striking effects on cilium formation suggest a central regulatory role for these proteins, likely involving CCT/TRiC chaperone activity, in ciliogenesis.


Asunto(s)
Ciclo Celular/fisiología , Centriolos/metabolismo , Cilios/fisiología , Proteínas de Unión al GTP/metabolismo , Proteínas Asociadas a Microtúbulos/metabolismo , Animales , Western Blotting , Chlamydomonas , Cromatografía Liquida , Técnica del Anticuerpo Fluorescente , Técnicas de Silenciamiento del Gen , Inmunohistoquímica , Inmunoprecipitación , Péptidos y Proteínas de Señalización Intracelular , Ratones , Microscopía Electrónica de Transmisión , Chaperonas Moleculares/metabolismo , Células 3T3 NIH , Reacción en Cadena en Tiempo Real de la Polimerasa , Reacción en Cadena de la Polimerasa de Transcriptasa Inversa , Espectrometría de Masas en Tándem
8.
Dev Biol ; 380(2): 243-58, 2013 Aug 15.
Artículo en Inglés | MEDLINE | ID: mdl-23685253

RESUMEN

Nucleotide binding protein 1 (Nubp1) is a highly conserved phosphate loop (P-loop) ATPase involved in diverse processes including iron-sulfur protein assembly, centrosome duplication and lung development. Here, we report the cloning, expression and functional characterization of Xenopus laevis Nubp1. We show that xNubp1 is expressed maternally, displays elevated expression in neural tissues and is required for convergent extension movements and neural tube closure. In addition, xNubp1knockdown leads to defective ciliogenesis of the multi-ciliated cells of the epidermis as well as the monociliated cells of the gastrocoel roof plate. Specifically, xNubp1 is required for basal body migration, spacing and docking in multi-ciliated cells and basal body positioning and axoneme elongation in monociliated gastrocoel roof plate cells. Live imaging of the different pools of actin and basal body migration during the process of ciliated cell intercalation revealed that two independent pools of actin are present from the onset of cell intercalation; an internal network surrounding the basal bodies, anchoring them to the cell cortex and an apical pool of punctate actin which eventually matures into the characteristic apical actin network. We show that xNubp1 colocalizes with the apical actin network of multiciliated cells and that problems in basal body transport in xNubp1 morphants are associated with defects of the internal network of actin, while spacing and polarity issues are due to a failure of the apical and sub-apical actin pools to mature into a network. Effects of xNubp1 knockdown on the actin cytoskeleton are independent of RhoA localization and activation, suggesting that xNubp1 may have a direct role in the regulation of the actin cytoskeleton.


Asunto(s)
Citoesqueleto de Actina/fisiología , Cilios/fisiología , Proteínas de Unión al GTP/fisiología , Morfogénesis , Proteínas de Xenopus/fisiología , Xenopus laevis/embriología , Animales , Movimiento Celular , Femenino
9.
Cell Mol Life Sci ; 70(2): 335-56, 2013 Jan.
Artículo en Inglés | MEDLINE | ID: mdl-22945799

RESUMEN

KIF1Bß is a kinesin-like, microtubule-based molecular motor protein involved in anterograde axonal vesicular transport in vertebrate and invertebrate neurons. Certain KIF1Bß isoforms have been implicated in different forms of human neurodegenerative disease, with characterization of their functional integration and regulation in the context of synaptic signaling still ongoing. Here, we characterize human KIF1Bß (isoform NM015074), whose expression we show to be developmentally regulated and elevated in cortical areas of the CNS (including the motor cortex), in the hippocampus, and in spinal motor neurons. KIF1Bß localizes to the cell body, axon, and dendrites, overlapping with synaptic-vesicle and postsynaptic-density structures. Correspondingly, in purified cortical synaptoneurosomes, KIF1Bß is enriched in both pre- and postsynaptic structures, forming detergent-resistant complexes. Interestingly, KIF1Bß forms RNA-protein complexes, containing the dendritically localized Arc and Calmodulin mRNAs, proteins previously shown to be part of RNA transport granules such as Purα, FMRP and FXR2P, and motor protein KIF3A, as well as Calmodulin. The interaction between KIF1Bß and Calmodulin is Ca(+2)-dependent and takes place through a domain mapped at the carboxy-terminal tail of the motor. Live imaging of cortical neurons reveals active movement by KIF1Bß at dendritic processes, suggesting that it mediates the transport of dendritically localized mRNAs. Finally, we show that synaptic recruitment of KIF1Bß is activity-dependent and increased by stimulation of metabotropic or ionotropic glutamate receptors. The activity-dependent synaptic recruitment of KIF1Bß, its interaction with Ca(2+) sensor Calmodulin, and its new role as a dendritic motor of ribonucleoprotein complexes provide a novel basis for understanding the concerted co-ordination of motor protein mobilization and synaptic signaling pathways.


Asunto(s)
Sistema Nervioso Central/metabolismo , Dendritas/metabolismo , Cinesinas/metabolismo , Proteínas Motoras Moleculares/metabolismo , Neuronas Motoras/metabolismo , Ribonucleoproteínas/metabolismo , Vesículas Sinápticas/metabolismo , Animales , Transporte Biológico , Calcio/metabolismo , Calmodulina/metabolismo , Línea Celular Tumoral , Humanos , Cinesinas/genética , Ratones , Proteínas del Tejido Nervioso/metabolismo , Enfermedades Neurodegenerativas/etiología , Isoformas de Proteínas/metabolismo , Interferencia de ARN , ARN Mensajero/metabolismo , ARN Interferente Pequeño , Receptores de Glutamato/metabolismo , Transducción de Señal
10.
Proteins ; 80(1): 206-20, 2012 Jan.
Artículo en Inglés | MEDLINE | ID: mdl-22038794

RESUMEN

Human coilin interacting nuclear ATPase protein (hCINAP) directly interacts with coilin, a marker protein of Cajal Bodies (CBs), nuclear organelles involved in the maturation of small nuclear ribonucleoproteins UsnRNPs and snoRNPs. hCINAP has previously been designated as an adenylate kinase (AK6), but is very atypical as it exhibits unusually broad substrate specificity, structural features characteristic of ATPase/GTPase proteins (Walker motifs A and B) and also intrinsic ATPase activity. Despite its intriguing structure, unique properties and cellular localization, the enzymatic mechanism and biological function of hCINAP have remained poorly characterized. Here, we offer the first high-resolution structure of hCINAP in complex with the substrate ADP (and dADP), the structure of hCINAP with a sulfate ion bound at the AMP binding site, and the structure of the ternary complex hCINAP-Mg(2+) ADP-Pi. Induced fit docking calculations are used to predict the structure of the hCINAP-Mg(2+) ATP-AMP ternary complex. Structural analysis suggested a functional role for His79 in the Walker B motif. Kinetic analysis of mutant hCINAP-H79G indicates that His79 affects both AK and ATPase catalytic efficiency and induces homodimer formation. Finally, we show that in vivo expression of hCINAP-H79G in human cells is toxic and drastically deregulates the number and appearance of CBs in the cell nucleus. Our findings suggest that hCINAP may not simply regulate nucleotide homeostasis, but may have broader functionality, including control of CB assembly and disassembly in the nucleus of human cells.


Asunto(s)
Adenilato Quinasa/química , Proteínas Nucleares/química , Adenosina Difosfato/química , Adenilato Quinasa/genética , Adenilato Quinasa/metabolismo , Secuencias de Aminoácidos , Sustitución de Aminoácidos , Dominio Catalítico , Cuerpos Enrollados/metabolismo , Simulación por Computador , Cristalografía por Rayos X , Proteínas de Unión al ADN , Células HeLa , Humanos , Cinética , Modelos Moleculares , Mutagénesis Sitio-Dirigida , Proteínas Nucleares/genética , Proteínas Nucleares/metabolismo , Unión Proteica , Estructura Terciaria de Proteína , Proteínas Recombinantes/química , Proteínas Recombinantes/genética , Proteínas Recombinantes/metabolismo , Programas Informáticos , Sulfatos/química
11.
BMC Genomics ; 8: 26, 2007 Jan 23.
Artículo en Inglés | MEDLINE | ID: mdl-17244347

RESUMEN

BACKGROUND: Amyotrophic lateral sclerosis (ALS) is a fatal disorder caused by the progressive degeneration of motoneurons in brain and spinal cord. Despite identification of disease-linked mutations, the diversity of processes involved and the ambiguity of their relative importance in ALS pathogenesis still represent a major impediment to disease models as a basis for effective therapies. Moreover, the human motor cortex, although critical to ALS pathology and physiologically altered in most forms of the disease, has not been screened systematically for therapeutic targets. RESULTS: By whole-genome expression profiling and stringent significance tests we identify genes and gene groups de-regulated in the motor cortex of patients with sporadic ALS, and interpret the role of individual candidate genes in a framework of differentially expressed pathways. Our findings emphasize the importance of defense responses and cytoskeletal, mitochondrial and proteasomal dysfunction, reflect reduced neuronal maintenance and vesicle trafficking, and implicate impaired ion homeostasis and glycolysis in ALS pathogenesis. Additionally, we compared our dataset with publicly available data for the SALS spinal cord, and show a high correlation of changes linked to the diseased state in the SALS motor cortex. In an analogous comparison with data for the Alzheimer's disease hippocampus we demonstrate a low correlation of global changes and a moderate correlation for changes specifically linked to the SALS diseased state. CONCLUSION: Gene and sample numbers investigated allow pathway- and gene-based analyses by established error-correction methods, drawing a molecular portrait of the ALS motor cortex that faithfully represents many known disease features and uncovers several novel aspects of ALS pathology. Contrary to expectations for a tissue under oxidative stress, nuclear-encoded mitochondrial genes are uniformly down-regulated. Moreover, the down-regulation of mitochondrial and glycolytic genes implies a combined reduction of mitochondrial and cytoplasmic energy supply, with a possible role in the death of ALS motoneurons. Identifying candidate genes exclusively expressed in non-neuronal cells, we also highlight the importance of these cells in disease development in the motor cortex. Notably, some pathways and candidate genes identified by this study are direct or indirect targets of medication already applied to unrelated illnesses and point the way towards the rapid development of effective symptomatic ALS therapies.


Asunto(s)
Esclerosis Amiotrófica Lateral/genética , Esclerosis Amiotrófica Lateral/metabolismo , Perfilación de la Expresión Génica , Corteza Motora/metabolismo , Anciano , Anciano de 80 o más Años , Enfermedad de Alzheimer/metabolismo , Femenino , Hipocampo/metabolismo , Humanos , Masculino , Persona de Mediana Edad , Modelos Biológicos , Datos de Secuencia Molecular , Reacción en Cadena de la Polimerasa de Transcriptasa Inversa , Transducción de Señal , Médula Espinal/metabolismo
12.
FEBS Lett ; 584(22): 4559-64, 2010 Nov 19.
Artículo en Inglés | MEDLINE | ID: mdl-20974138

RESUMEN

hCINAP is an atypical nucleoplasmic enzyme, combining structural features of adenylate kinases and ATPases, which exhibits dual enzymatic activity. It interacts with the Cajal Body marker coilin and its level of expression and enzymatic activity influence Cajal Body numbers. Here we show that upon specific transcriptional inhibition of RNA pol.II, hCINAP segregates in perinuclear caps identified as Dark Nucleolar Caps (DNCs). These are distinct from perinucleolar caps where coilin and fibrillarin (both Cajal Body components) accumulate. In DNCs, hCINAP co-localizes with Paraspeckle Protein (PSP1) and also co-segregates with PSP1, and not coilin, in nuclear and nucleolar foci upon UV irradiation.


Asunto(s)
Adenosina Trifosfatasas/metabolismo , Adenilato Quinasa/metabolismo , Nucléolo Celular/metabolismo , ARN Polimerasa II/metabolismo , Transporte Activo de Núcleo Celular/efectos de la radiación , Nucléolo Celular/efectos de la radiación , Células HeLa , Humanos , Rayos Ultravioleta
13.
Biotechnol J ; 3(12): 1521-38, 2008 Dec.
Artículo en Inglés | MEDLINE | ID: mdl-19072908

RESUMEN

Recently, intense interest in the potential use of neural stem cells (NSC) in the clinical therapy of brain disease and injury has resulted in rapid progress in research on the properties of NSC, their innate and directed differentiation potential and the induced reprogramming of differentiated somatic cells to revert to a pluripotent NSC-like state. The aim of this review is to give an overview of our current operational definitions of the NSC lineage, the growing understanding of extrinsic and intrinsic mechanisms, including heritable but reversible epigenetic chromatin modifications that regulate the maintenance and differentiation of NSC in vivo, and to emphasize ground-breaking efforts of cellular reprogramming with the view to generating patient-specific stem cells for cell replacement therapy. This is set against a summary of current practical procedures for the isolation, research and application of NSC, and of the state of the art in NSC-based regenerative medicine of the nervous system. Both provide the backdrop for the translation of recent findings into innovative clinical applications, with the hope of increasing the safety, efficiency and ethical acceptability of NSC-based therapies in the near future.


Asunto(s)
Investigación Biomédica/tendencias , Encefalopatías/cirugía , Regeneración Nerviosa , Neuronas/trasplante , Neurociencias/tendencias , Medicina Regenerativa/tendencias , Trasplante de Células Madre/tendencias , Humanos
14.
Biotechnol J ; 2(5): 608-21, 2007 May.
Artículo en Inglés | MEDLINE | ID: mdl-17345579

RESUMEN

The aim of this review is to analyze how our knowledge on the etiology, pathology, and treatment of amyotrophic lateral sclerosis (ALS) has profited from the application of biotechnology tools for the identification of disease markers, the development of animal disease models, and the design of innovative therapeutics. In humans, ALS-specific clinical, genetic or protein biomarkers, or panels of biomarkers stemming from genomics and proteomics analyses can be critical for early diagnosis, monitoring of disease progression, drug validation in clinical trials, and identification of therapeutic targets for subsequent drug development. At the same time, animal models representing a number of human superoxide dismutase 1 mutations, intermediate-filament disorganization or axonal-transport defects have been invaluable in unraveling aspects of the pathophysiology of the disease; in each case, these only represent a small proportion of all ALS patients. Preclinical and clinical trials, although at present heavily concentrating on pharmacological approaches, are embracing the emerging alternative strategies of stem-cell and gene therapy. In combination with a further subcategorization of patients and the development of corresponding model systems for functional analyses, they will significantly influence the already changing face of ALS therapy.


Asunto(s)
Esclerosis Amiotrófica Lateral/metabolismo , Esclerosis Amiotrófica Lateral/terapia , Biomarcadores/metabolismo , Biotecnología/métodos , Sistemas de Liberación de Medicamentos/métodos , Proteínas del Tejido Nervioso/metabolismo , Esclerosis Amiotrófica Lateral/diagnóstico , Animales , Humanos
15.
Neurobiol Dis ; 26(3): 577-89, 2007 Jun.
Artículo en Inglés | MEDLINE | ID: mdl-17418584

RESUMEN

The molecular mechanisms underlying the selective neurodegeneration of motor neurons in amyotrophic lateral sclerosis (ALS) are inadequately understood. Recent breakthroughs have implicated impaired axonal transport, mediated by molecular motors, as a key element for disease onset and progression. The current work identifies the expression of 15 kinesin-like motors in healthy human motor cortex, including three novel isoforms. Our comprehensive quantitative mRNA analysis in control and sporadic ALS (SALS) motor cortex specimens detects SALS-specific down-regulation of KIF1Bbeta and novel KIF3Abeta, two isoforms we show to be enriched in the brain, and also of SOD1, a key enzyme linked to familial ALS. This is accompanied by a marked reduction of KIF3Abeta protein levels. In the motor cortex KIF3Abeta localizes in cholinergic neurons, including upper motor neurons. No mutations causing splicing defects or altering protein-coding sequences were identified in the genes of the three proteins. The present study implicates two motor proteins as possible candidates in SALS pathology.


Asunto(s)
Esclerosis Amiotrófica Lateral/metabolismo , Regulación de la Expresión Génica , Proteínas Motoras Moleculares/metabolismo , Corteza Motora/metabolismo , Neuronas Motoras/metabolismo , Anciano , Empalme Alternativo/genética , Esclerosis Amiotrófica Lateral/genética , Esclerosis Amiotrófica Lateral/fisiopatología , Animales , Fibras Colinérgicas/metabolismo , Fibras Colinérgicas/patología , Modelos Animales de Enfermedad , Regulación hacia Abajo/genética , Femenino , Regulación de la Expresión Génica/fisiología , Marcadores Genéticos/genética , Humanos , Cinesinas/genética , Masculino , Ratones , Ratones Transgénicos , Persona de Mediana Edad , Proteínas Motoras Moleculares/genética , Corteza Motora/fisiopatología , Neuronas Motoras/patología , Mutación/genética , Proteínas del Tejido Nervioso/genética , Isoformas de Proteínas/genética , ARN Mensajero/metabolismo , Superóxido Dismutasa/genética , Superóxido Dismutasa-1
16.
J Cell Sci ; 119(Pt 10): 2035-47, 2006 May 15.
Artículo en Inglés | MEDLINE | ID: mdl-16638812

RESUMEN

Inhibition of motor protein activity has been linked with defects in the formation of poles in the spindle of dividing cells. However, the molecular mechanisms underlying the functional relationship between motor activity and centrosome dynamics have remained uncharacterised. Here, we characterise KIFC5A, a mouse kinesin-like protein that is highly expressed in dividing cells and tissues, and is subject to developmental and cell-type-specific regulation. KIFC5A is a minus-end-directed, microtubule-dependent motor that produces velocities of up to 1.26 microm minute(-1) in gliding assays and possesses microtubule bundling activity. It is nuclear in interphase, localises to the centre of the two microtubule asters at the beginning of mitosis, and to spindle microtubules in later mitotic phases. Overexpression of KIFC5A in mouse cells causes the formation of aberrant, non-separated microtubule asters and mitotic arrest in a prometaphase-like state. KIFC5A knockdown partly rescues the phenotype caused by inhibition of plus-end-directed motor Eg5 by monastrol on the mitotic spindle, indicating that it is involved in the balance of forces determining bipolar spindle assembly and integrity. Silencing of KIFC5A also results in centrosome amplification detectable throughout the cell cycle. Supernumerary centrosomes arise primarily as a result of reduplication and partly as a result of cytokinesis defects. They contain duplicated centrioles and have the ability to organise microtubule asters, resulting in the formation of multipolar spindles. We show that KIFC5A interacts with nucleotide-binding proteins 1 and 2 (Nubp1 and Nubp2), which have extensive sequence similarity to prokaryotic division-site-determining protein MinD. Nubp1 and Nubp2 also interact with each other. Knockdown of Nubp1 or double knockdown of Nubp1 and Nubp2 (Nubp1&Nubp2) both phenocopy the KIFC5A silencing effect. These results implicate KIFC5A and the Nubp proteins in a common regulatory pathway involved in the control of centrosome duplication in mammalian cells.


Asunto(s)
Centrosoma/metabolismo , Proteínas de Unión al GTP/metabolismo , Proteínas Asociadas a Microtúbulos/metabolismo , Proteínas Motoras Moleculares/metabolismo , Adenosina Trifosfatasas/genética , Adenosina Trifosfatasas/metabolismo , Secuencia de Aminoácidos , Animales , Proteínas de Escherichia coli/genética , Proteínas de Escherichia coli/metabolismo , Proteínas de Unión al GTP/genética , Hipocampo/metabolismo , Péptidos y Proteínas de Señalización Intracelular , Ratones , Proteínas Asociadas a Microtúbulos/biosíntesis , Proteínas Asociadas a Microtúbulos/genética , Proteínas Motoras Moleculares/biosíntesis , Proteínas Motoras Moleculares/genética , Datos de Secuencia Molecular , Células 3T3 NIH , Complejo Silenciador Inducido por ARN , Análisis de Secuencia , Huso Acromático/metabolismo , Transfección
17.
J Biol Chem ; 280(43): 36429-41, 2005 Oct 28.
Artículo en Inglés | MEDLINE | ID: mdl-16079131

RESUMEN

Coilin is a marker protein for the Cajal body, a subnuclear domain acting as a site for assembly and maturation of nuclear RNA-protein complexes. Using a yeast two-hybrid screen to identify coilin-interacting proteins, we have identified hCINAP (human coilin interacting nuclear ATPase protein), a nuclear factor of 172 amino acids with a P-loop nucleotide binding motif and ATPase activity. The hCINAP protein sequence is highly conserved across its full-length from human to plants and yeast and is ubiquitously expressed in all human tissues and cell lines tested. The yeast orthologue of CINAP is a single copy, essential gene. Tagged hCINAP is present in complexes containing coilin in mammalian cells and recombinant, Escherichia coli expressed hCINAP binds directly to coilin in vitro. The 214 carboxyl-terminal residues of coilin appear essential for the interaction with hCINAP. Both immunofluorescence and fluorescent protein tagging show that hCINAP is specifically nuclear and distributed in a widespread, diffuse nucleoplasmic pattern, excluding nucleoli, with some concentration also in Cajal bodies. Overexpression of hCINAP in HeLa cells results in a decrease in the average number of Cajal bodies per nucleus, consistent with it affecting either the stability of Cajal bodies and/or their rate of assembly. The hCINAP mRNA is an alternatively spliced transcript from the TAF9 locus, which encodes the basal transcription factor subunit TAFIID32. However, hCINAP and TAFIID32 mRNAs are translated from different ATG codons and use distinct reading frames, resulting in them having no identity in their respective protein sequences.


Asunto(s)
Proteínas Nucleares/fisiología , ARN Mensajero/metabolismo , Factores Asociados con la Proteína de Unión a TATA/fisiología , Factor de Transcripción TFIID/fisiología , Adenosina Trifosfato/química , Empalme Alternativo , Secuencias de Aminoácidos , Secuencia de Aminoácidos , Animales , Proteínas Bacterianas/metabolismo , Núcleo Celular/metabolismo , Cuerpos Enrollados/metabolismo , Secuencia Conservada , ADN/química , ADN Complementario/metabolismo , Proteínas de Unión al ADN , Electroforesis en Gel de Poliacrilamida , Glutatión Transferasa/metabolismo , Células HeLa , Humanos , Hidrólisis , Inmunoprecipitación , Cinética , Proteínas Luminiscentes/química , Proteínas Luminiscentes/metabolismo , Microscopía Confocal , Microscopía Fluorescente , Modelos Genéticos , Datos de Secuencia Molecular , Proteínas Nucleares/química , Oligonucleótidos/química , Plásmidos/metabolismo , Reacción en Cadena de la Polimerasa , Unión Proteica , Biosíntesis de Proteínas , Estructura Terciaria de Proteína , ARN/química , Proteínas Recombinantes/química , Reacción en Cadena de la Polimerasa de Transcriptasa Inversa , Homología de Secuencia de Aminoácido , Factores Asociados con la Proteína de Unión a TATA/química , Factor de Transcripción TFIID/química , Transfección , Técnicas del Sistema de Dos Híbridos
18.
J Cell Sci ; 117(Pt 19): 4537-49, 2004 Sep 01.
Artículo en Inglés | MEDLINE | ID: mdl-15316074

RESUMEN

Kinectin is an integral transmembrane protein on the endoplasmic reticulum, binding to kinesin, interacting with Rho GTPase and anchoring the translation elongation factor-1 complex. There has been debate on the specific role(s) of kinectin in different species and cell types. Here we identified 15 novel kinectin isoforms in the mouse nervous system, constituting a family of alternatively spliced carboxyl-terminal variants. Isoform expression is subject to cell type- and developmental stage-specific regulation. We raised specific antibodies to the kinectin variants to characterise their differential intracellular localisation and discovered that certain kinectin isoforms are found in axons where kinectin was previously believed to be absent. We also demonstrated in vivo by overexpression and RNA interference assay that kinectin is selectively involved in the transport of specific types of organelles. A 160 kDa kinectin species is mainly concentrated in the endoplasmic reticulum, anchored via its transmembrane domain and is essential for endoplasmic reticulum membrane extension. A 120 kDa kinectin species is specifically associated with mitochondria, and its interaction with kinesin was found to influence mitochondrial dynamics. These findings contribute to a more unified view of kinectin function. They suggest that different cellular processes use specific kinectin isoforms to mediate intracellular motility and targeting by transient interaction with different motor proteins or other binding partners.


Asunto(s)
Empalme Alternativo/fisiología , Astrocitos/metabolismo , Retículo Endoplásmico/metabolismo , Proteínas de la Membrana/metabolismo , Mitocondrias/metabolismo , Animales , Axones/metabolismo , Transporte Biológico/fisiología , Células Cultivadas , Células HeLa , Humanos , Ratones , Isoformas de Proteínas/metabolismo , ARN Interferente Pequeño/metabolismo , Ratas
SELECCIÓN DE REFERENCIAS
DETALLE DE LA BÚSQUEDA