Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 20 de 68
Filtrar
1.
Proc Natl Acad Sci U S A ; 115(49): E11465-E11474, 2018 12 04.
Artículo en Inglés | MEDLINE | ID: mdl-30455320

RESUMEN

A-kinase anchoring proteins (AKAPs) shape second-messenger signaling responses by constraining protein kinase A (PKA) at precise intracellular locations. A defining feature of AKAPs is a helical region that binds to regulatory subunits (RII) of PKA. Mining patient-derived databases has identified 42 nonsynonymous SNPs in the PKA-anchoring helices of five AKAPs. Solid-phase RII binding assays confirmed that 21 of these amino acid substitutions disrupt PKA anchoring. The most deleterious side-chain modifications are situated toward C-termini of AKAP helices. More extensive analysis was conducted on a valine-to-methionine variant in the PKA-anchoring helix of AKAP18. Molecular modeling indicates that additional density provided by methionine at position 282 in the AKAP18γ isoform deflects the pitch of the helical anchoring surface outward by 6.6°. Fluorescence polarization measurements show that this subtle topological change reduces RII-binding affinity 8.8-fold and impairs cAMP responsive potentiation of L-type Ca2+ currents in situ. Live-cell imaging of AKAP18γ V282M-GFP adducts led to the unexpected discovery that loss of PKA anchoring promotes nuclear accumulation of this polymorphic variant. Targeting proceeds via a mechanism whereby association with the PKA holoenzyme masks a polybasic nuclear localization signal on the anchoring protein. This led to the discovery of AKAP18ε: an exclusively nuclear isoform that lacks a PKA-anchoring helix. Enzyme-mediated proximity-proteomics reveal that compartment-selective variants of AKAP18 associate with distinct binding partners. Thus, naturally occurring PKA-anchoring-defective AKAP variants not only perturb dissemination of local second-messenger responses, but also may influence the intracellular distribution of certain AKAP18 isoforms.


Asunto(s)
Proteínas de Anclaje a la Quinasa A/metabolismo , Proteínas Quinasas Dependientes de AMP Cíclico/química , Proteínas Quinasas Dependientes de AMP Cíclico/genética , Proteínas de la Membrana/metabolismo , Proteínas de Anclaje a la Quinasa A/genética , Proteínas Quinasas Dependientes de AMP Cíclico/metabolismo , Regulación Enzimológica de la Expresión Génica , Estudio de Asociación del Genoma Completo , Humanos , Proteínas de la Membrana/genética , Modelos Moleculares , Polimorfismo de Nucleótido Simple , Unión Proteica , Conformación Proteica , Isoformas de Proteínas , Transporte de Proteínas
2.
Biochim Biophys Acta Mol Cell Res ; 1865(9): 1341-1355, 2018 09.
Artículo en Inglés | MEDLINE | ID: mdl-29959960

RESUMEN

L-type CaV1.2 channels are key regulators of gene expression, cell excitability and muscle contraction. CaV1.2 channels organize in clusters throughout the plasma membrane. This channel organization has been suggested to contribute to the concerted activation of adjacent CaV1.2 channels (e.g. cooperative gating). Here, we tested the hypothesis that dynamic intracellular and perimembrane trafficking of CaV1.2 channels is critical for formation and dissolution of functional channel clusters mediating cooperative gating. We found that CaV1.2 moves in vesicular structures of circular and tubular shape with diverse intracellular and submembrane trafficking patterns. Both microtubules and actin filaments are required for dynamic movement of CaV1.2 vesicles. These vesicles undergo constitutive homotypic fusion and fission events that sustain CaV1.2 clustering, channel activity and cooperative gating. Our study suggests that CaV1.2 clusters and activity can be modulated by diverse and unique intracellular and perimembrane vesicular dynamics to fine-tune Ca2+ signals.


Asunto(s)
Citoesqueleto de Actina/metabolismo , Canales de Calcio Tipo L/metabolismo , Microtúbulos/metabolismo , Vesículas Transportadoras/metabolismo , Señalización del Calcio , Línea Celular , Membrana Celular/metabolismo , Citoplasma/metabolismo , Humanos , Activación del Canal Iónico , Transporte de Proteínas
3.
PLoS Comput Biol ; 14(1): e1005906, 2018 01.
Artículo en Inglés | MEDLINE | ID: mdl-29338006

RESUMEN

In ventricular myocytes, membrane depolarization during the action potential (AP) causes synchronous activation of multiple L-type CaV1.2 channels (LTCCs), which trigger the release of calcium (Ca2+) from the sarcoplasmic reticulum (SR). This results in an increase in intracellular Ca2+ (Cai) that initiates contraction. During pulsus alternans, cardiac contraction is unstable, going from weak to strong in successive beats despite a constant heart rate. These cardiac alternans can be caused by the instability of membrane potential (Vm) due to steep AP duration (APD) restitution (Vm-driven alternans), instability of Cai cycling (Ca2+-driven alternans), or both, and may be modulated by functional coupling between clustered CaV1.2 (e.g. cooperative gating). Here, mathematical analysis and computational models were used to determine how changes in the strength of cooperative gating between LTCCs may impact membrane voltage and intracellular Ca2+ dynamics in the heart. We found that increasing the degree of coupling between LTCCs increases the amplitude of Ca2+ currents (ICaL) and prolongs AP duration (APD). Increased AP duration is known to promote cardiac alternans, a potentially arrhythmogenic substrate. In addition, our analysis shows that increasing the strength of cooperative activation of LTCCs makes the coupling of Ca2+ on the membrane voltage (Cai→Vm coupling) more positive and destabilizes the Vm-Cai dynamics for Vm-driven alternans and Cai-driven alternans, but not for quasiperiodic oscillation. These results suggest that cooperative gating of LTCCs may have a major impact on cardiac excitation-contraction coupling, not only by prolonging APD, but also by altering Cai→Vm coupling and potentially promoting cardiac arrhythmias.


Asunto(s)
Arritmias Cardíacas/fisiopatología , Canales de Calcio Tipo L/metabolismo , Contracción Miocárdica , Miocitos Cardíacos/citología , Potenciales de Acción , Animales , Calcio/química , Señalización del Calcio , Biología Computacional , Simulación por Computador , Acoplamiento Excitación-Contracción , Frecuencia Cardíaca , Cadenas de Markov , Modelos Biológicos , Miocardio/citología , Distribución Normal , Lenguajes de Programación , Conejos , Retículo Sarcoplasmático/metabolismo , Procesos Estocásticos
4.
Circ Res ; 114(4): 607-15, 2014 Feb 14.
Artículo en Inglés | MEDLINE | ID: mdl-24323672

RESUMEN

RATIONALE: Increased contractility of arterial myocytes and enhanced vascular tone during hyperglycemia and diabetes mellitus may arise from impaired large-conductance Ca(2+)-activated K(+) (BKCa) channel function. The scaffolding protein A-kinase anchoring protein 150 (AKAP150) is a key regulator of calcineurin (CaN), a phosphatase known to modulate the expression of the regulatory BKCa ß1 subunit. Whether AKAP150 mediates BKCa channel suppression during hyperglycemia and diabetes mellitus is unknown. OBJECTIVE: To test the hypothesis that AKAP150-dependent CaN signaling mediates BKCa ß1 downregulation and impaired vascular BKCa channel function during hyperglycemia and diabetes mellitus. METHODS AND RESULTS: We found that AKAP150 is an important determinant of BKCa channel remodeling, CaN/nuclear factor of activated T-cells c3 (NFATc3) activation, and resistance artery constriction in hyperglycemic animals on high-fat diet. Genetic ablation of AKAP150 protected against these alterations, including augmented vasoconstriction. d-glucose-dependent suppression of BKCa channel ß1 subunits required Ca(2+) influx via voltage-gated L-type Ca(2+) channels and mobilization of a CaN/NFATc3 signaling pathway. Remarkably, high-fat diet mice expressing a mutant AKAP150 unable to anchor CaN resisted activation of NFATc3 and downregulation of BKCa ß1 subunits and attenuated high-fat diet-induced elevation in arterial blood pressure. CONCLUSIONS: Our results support a model whereby subcellular anchoring of CaN by AKAP150 is a key molecular determinant of vascular BKCa channel remodeling, which contributes to vasoconstriction during diabetes mellitus.


Asunto(s)
Proteínas de Anclaje a la Quinasa A/metabolismo , Diabetes Mellitus Experimental/metabolismo , Hiperglucemia/metabolismo , Subunidades beta de los Canales de Potasio de Gran Conductancia Activados por el Calcio/metabolismo , Canales de Potasio de Gran Conductancia Activados por el Calcio/metabolismo , Vasoconstricción/fisiología , Proteínas de Anclaje a la Quinasa A/genética , Animales , Diabetes Mellitus Experimental/genética , Diabetes Mellitus Experimental/fisiopatología , Grasas de la Dieta/farmacología , Técnicas de Sustitución del Gen , Hiperglucemia/genética , Hiperglucemia/fisiopatología , Hipertensión/genética , Hipertensión/metabolismo , Hipertensión/fisiopatología , Subunidades beta de los Canales de Potasio de Gran Conductancia Activados por el Calcio/genética , Canales de Potasio de Gran Conductancia Activados por el Calcio/genética , Ratones , Ratones Endogámicos BALB C , Ratones Endogámicos C57BL , Ratones Mutantes , Músculo Liso Vascular/metabolismo , Músculo Liso Vascular/fisiología , Factores de Transcripción NFATC/metabolismo , Péptidos/farmacología , Transducción de Señal/fisiología , Toxinas Biológicas/farmacología , Vasoconstricción/efectos de los fármacos
5.
Circulation ; 129(17): 1742-50, 2014 Apr 29.
Artículo en Inglés | MEDLINE | ID: mdl-24519927

RESUMEN

BACKGROUND: Cardiac dysfunction in failing hearts of human patients and animal models is associated with both microtubule densification and transverse-tubule (T-tubule) remodeling. Our objective was to investigate whether microtubule densification contributes to T-tubule remodeling and excitation-contraction coupling dysfunction in heart disease. METHODS AND RESULTS: In a mouse model of pressure overload-induced cardiomyopathy by transaortic banding, colchicine, a microtubule depolymerizer, significantly ameliorated T-tubule remodeling and cardiac dysfunction. In cultured cardiomyocytes, microtubule depolymerization with nocodazole or colchicine profoundly attenuated T-tubule impairment, whereas microtubule polymerization/stabilization with taxol accelerated T-tubule remodeling. In situ immunofluorescence of heart tissue sections demonstrated significant disorganization of junctophilin-2 (JP2), a protein that bridges the T-tubule and sarcoplasmic reticulum membranes, in transaortic banded hearts as well as in human failing hearts, whereas colchicine injection significantly preserved the distribution of JP2 in transaortic banded hearts. In isolated mouse cardiomyocytes, prolonged culture or treatment with taxol resulted in pronounced redistribution of JP2 from T-tubules to the peripheral plasma membrane, without changing total JP2 expression. Nocodazole treatment antagonized JP2 redistribution. Moreover, overexpression of a dominant-negative mutant of kinesin 1, a microtubule motor protein responsible for anterograde trafficking of proteins, protected against JP2 redistribution and T-tubule remodeling in culture. Finally, nocodazole treatment improved Ca(2+) handling in cultured myocytes by increasing the amplitude of Ca(2+) transients and reducing the frequency of Ca(2+) sparks. CONCLUSION: Our data identify a mechanistic link between microtubule densification and T-tubule remodeling and reveal microtubule-mediated JP2 redistribution as a novel mechanism for T-tubule disruption, loss of excitation-contraction coupling, and heart failure.


Asunto(s)
Señalización del Calcio/fisiología , Insuficiencia Cardíaca/metabolismo , Proteínas de la Membrana/metabolismo , Microtúbulos/metabolismo , Proteínas Musculares/metabolismo , Miocitos Cardíacos/metabolismo , Animales , Señalización del Calcio/efectos de los fármacos , Cardiomegalia/metabolismo , Cardiomegalia/patología , Cardiomegalia/fisiopatología , Cardiomiopatías/metabolismo , Cardiomiopatías/patología , Cardiomiopatías/fisiopatología , Células Cultivadas , Colchicina/farmacología , Modelos Animales de Enfermedad , Acoplamiento Excitación-Contracción/efectos de los fármacos , Acoplamiento Excitación-Contracción/fisiología , Insuficiencia Cardíaca/patología , Insuficiencia Cardíaca/fisiopatología , Humanos , Cinesinas/metabolismo , Masculino , Ratones , Ratones Endogámicos C57BL , Ratones Noqueados , Microtúbulos/efectos de los fármacos , Miocitos Cardíacos/citología , Nocodazol/farmacología , Sarcolema/metabolismo , Moduladores de Tubulina/farmacología
6.
Proc Natl Acad Sci U S A ; 109(5): 1749-54, 2012 Jan 31.
Artículo en Inglés | MEDLINE | ID: mdl-22307641

RESUMEN

Ca(2+) influx via L-type Ca(v)1.2 channels is essential for multiple physiological processes, including gene expression, excitability, and contraction. Amplification of the Ca(2+) signals produced by the opening of these channels is a hallmark of many intracellular signaling cascades, including excitation-contraction coupling in heart. Using optogenetic approaches, we discovered that Ca(v)1.2 channels form clusters of varied sizes in ventricular myocytes. Physical interaction between these channels via their C-tails renders them capable of coordinating their gating, thereby amplifying Ca(2+) influx and excitation-contraction coupling. Light-induced fusion of WT Ca(v)1.2 channels with Ca(v)1.2 channels carrying a gain-of-function mutation that causes arrhythmias and autism in humans with Timothy syndrome (Ca(v)1.2-TS) increased Ca(2+) currents, diastolic and systolic Ca(2+) levels, contractility and the frequency of arrhythmogenic Ca(2+) fluctuations in ventricular myocytes. Our data indicate that these changes in Ca(2+) signaling resulted from Ca(v)1.2-TS increasing the activity of adjoining WT Ca(v)1.2 channels. Collectively, these data support the concept that oligomerization of Ca(v)1.2 channels via their C termini can result in the amplification of Ca(2+) influx into excitable cells.


Asunto(s)
Biopolímeros/metabolismo , Canales de Calcio Tipo L/metabolismo , Señalización del Calcio , Animales , Canales de Calcio Tipo L/genética , Ventrículos Cardíacos/metabolismo , Activación del Canal Iónico , Mutación
7.
J Mol Cell Cardiol ; 66: 63-71, 2014 Jan.
Artículo en Inglés | MEDLINE | ID: mdl-24215710

RESUMEN

Ca(2+) flux through l-type CaV1.2 channels shapes the waveform of the ventricular action potential (AP) and is essential for excitation-contraction (EC) coupling. Timothy syndrome (TS) is a disease caused by a gain-of-function mutation in the CaV1.2 channel (CaV1.2-TS) that decreases inactivation of the channel, which increases Ca(2+) influx, prolongs APs, and causes lethal arrhythmias. Although many details of the CaV1.2-TS channels are known, the cellular mechanisms by which they induce arrhythmogenic changes in intracellular Ca(2+) remain unclear. We found that expression of CaV1.2-TS channels increased sarcolemmal Ca(2+) "leak" in resting TS ventricular myocytes. This resulted in higher diastolic [Ca(2+)]i in TS ventricular myocytes compared to WT. Accordingly, TS myocytes had higher sarcoplasmic reticulum (SR) Ca(2+) load and Ca(2+) spark activity, larger amplitude [Ca(2+)]i transients, and augmented frequency of Ca(2+) waves. The large SR Ca(2+) release in TS myocytes had a profound effect on the kinetics of CaV1.2 current in these cells, increasing the rate of inactivation to a high, persistent level. This limited the amount of influx during EC coupling in TS myocytes. The relationship between the level of expression of CaV1.2-TS channels and the probability of Ca(2+) wave occurrence was non-linear, suggesting that even low levels of these channels were sufficient to induce maximal changes in [Ca(2+)]i. Depolarization of WT cardiomyocytes with a TS AP waveform increased, but did not equalize [Ca(2+)]i, compared to depolarization of TS myocytes with the same waveform. We propose that CaV1.2-TS channels increase [Ca(2+)] in the cytosol and the SR, creating a Ca(2+)overloaded state that increases the probability of arrhythmogenic spontaneous SR Ca(2+) release.


Asunto(s)
Canales de Calcio Tipo L/metabolismo , Calcio/metabolismo , Ventrículos Cardíacos/metabolismo , Síndrome de QT Prolongado/metabolismo , Miocitos Cardíacos/metabolismo , Sindactilia/metabolismo , Potenciales de Acción/fisiología , Animales , Trastorno Autístico , Canales de Calcio Tipo L/genética , Modelos Animales de Enfermedad , Acoplamiento Excitación-Contracción , Expresión Génica , Ventrículos Cardíacos/patología , Síndrome de QT Prolongado/genética , Síndrome de QT Prolongado/patología , Ratones , Miocitos Cardíacos/patología , Retículo Sarcoplasmático/metabolismo , Sindactilia/genética , Sindactilia/patología
8.
Proc Natl Acad Sci U S A ; 108(48): E1227-35, 2011 Nov 29.
Artículo en Inglés | MEDLINE | ID: mdl-22084075

RESUMEN

A-kinase anchoring proteins (AKAPs) tether the cAMP-dependent protein kinase (PKA) to intracellular sites where they preferentially phosphorylate target substrates. Most AKAPs exhibit nanomolar affinity for the regulatory (RII) subunit of the type II PKA holoenzyme, whereas dual-specificity anchoring proteins also bind the type I (RI) regulatory subunit of PKA with 10-100-fold lower affinity. A range of cellular, biochemical, biophysical, and genetic approaches comprehensively establish that sphingosine kinase interacting protein (SKIP) is a truly type I-specific AKAP. Mapping studies located anchoring sites between residues 925-949 and 1,140-1,175 of SKIP that bind RI with dissociation constants of 73 and 774 nM, respectively. Molecular modeling and site-directed mutagenesis approaches identify Phe 929 and Tyr 1,151 as RI-selective binding determinants in each anchoring site. SKIP complexes exist in different states of RI-occupancy as single-molecule pull-down photobleaching experiments show that 41 ± 10% of SKIP sequesters two YFP-RI dimers, whereas 59 ± 10% of the anchoring protein binds a single YFP-RI dimer. Imaging, proteomic analysis, and subcellular fractionation experiments reveal that SKIP is enriched at the inner mitochondrial membrane where it associates with a prominent PKA substrate, the coiled-coil helix protein ChChd3.


Asunto(s)
Proteínas de Anclaje a la Quinasa A/metabolismo , Proteínas Adaptadoras Transductoras de Señales/metabolismo , Proteínas Quinasas Dependientes de AMP Cíclico/metabolismo , Mitocondrias/metabolismo , Proteínas Mitocondriales/metabolismo , Modelos Moleculares , Conformación Proteica , Proteínas de Anclaje a la Quinasa A/genética , Proteínas Adaptadoras Transductoras de Señales/genética , Análisis de Varianza , Animales , Western Blotting , Línea Celular , Clonación Molecular , Humanos , Inmunoprecipitación , Espectrometría de Masas , Ratones , Mutagénesis Sitio-Dirigida , Unión Proteica/genética , Resonancia por Plasmón de Superficie , Transfección
9.
J Mol Cell Cardiol ; 58: 67-76, 2013 May.
Artículo en Inglés | MEDLINE | ID: mdl-23220157

RESUMEN

CaV1.2 sparklets are local elevations in intracellular Ca(2+) ([Ca(2+)]i) resulting from the opening of a single or small cluster of voltage-gated, dihydropyridine-sensitive CaV1.2 channels. Activation of CaV1.2 sparklets is an early event in the signaling cascade that couples membrane depolarization to contraction (i.e., excitation-contraction coupling) in cardiac and arterial smooth muscle. Here, we review recent work on the molecular and biophysical mechanisms that regulate CaV1.2 sparklet activity in these cells. CaV1.2 sparklet activity is tightly regulated by a cohort of protein kinases and phosphatases that are targeted to specific regions of the sarcolemma by the anchoring protein AKAP150. We discuss a model for the local control of Ca(2+) influx via CaV1.2 channels in which a signaling complex formed by AKAP79/150, protein kinase C, protein kinase A, and calcineurin regulates the activity of individual CaV1.2 channels and also facilitates the coordinated activation of small clusters of these channels. This results in amplification of Ca(2+) influx, which strengthens excitation-contraction coupling in cardiac and vascular smooth muscle.


Asunto(s)
Canales de Calcio Tipo L/metabolismo , Señalización del Calcio , Calcio/metabolismo , Músculo Liso Vascular/metabolismo , Canales de Calcio Tipo L/fisiología , Humanos , Potenciales de la Membrana , Músculo Liso Vascular/citología , Músculo Liso Vascular/fisiología , Transducción de Señal
10.
Am J Physiol Cell Physiol ; 305(5): C568-77, 2013 Sep.
Artículo en Inglés | MEDLINE | ID: mdl-23804206

RESUMEN

The activity of persistent Ca²âº sparklets, which are characterized by longer and more frequent channel open events than low-activity sparklets, contributes substantially to steady-state Ca²âº entry under physiological conditions. Here, we addressed two questions related to the regulation of Ca²âº sparklets by PKC-α and c-Src, both of which increase whole cell Cav1.2 current: 1) Does c-Src activation enhance persistent Ca²âº sparklet activity? 2) Does PKC-α activate c-Src to produce persistent Ca²âº sparklets? With the use of total internal reflection fluorescence microscopy, Ca²âº sparklets were recorded from voltage-clamped tsA-201 cells coexpressing wild-type (WT) or mutant Cav1.2c (the neuronal isoform of Cav1.2) constructs ± active or inactive PKC-α/c-Src. Cells expressing Cav1.2c exhibited both low-activity and persistent Ca²âº sparklets. Persistent Ca²âº sparklet activity was significantly reduced by acute application of the c-Src inhibitor PP2 or coexpression of kinase-dead c-Src. Cav1.2c constructs mutated at one of two COOH-terminal residues (Y²¹²²F and Y²¹³9F) were used to test the effect of blocking putative phosphorylation sites for c-Src. Expression of Y²¹²²F but not Y²¹³9F Cav1.2c abrogated the potentiating effect of c-Src on Ca²âº sparklet activity. We could not detect a significant change in persistent Ca²âº sparklet activity or density in cells coexpressing Cav1.2c + PKC-α, regardless of whether WT or Y²¹²²F Cav1.2c was used, or after PP2 application, suggesting that PKC-α does not act upstream of c-Src to produce persistent Ca²âº sparklets. However, our results indicate that persistent Ca²âº sparklet activity is promoted by the action of c-Src on residue Y²¹²² of the Cav1.2c COOH terminus.


Asunto(s)
Canales de Calcio Tipo L/metabolismo , Calcio/metabolismo , Neuronas/metabolismo , Proteína Quinasa C-alfa/metabolismo , Familia-src Quinasas/metabolismo , Animales , Proteína Tirosina Quinasa CSK , Canales de Calcio Tipo L/genética , Línea Celular Transformada , Regulación de la Expresión Génica , Humanos , Microscopía Fluorescente , Mutación , Neuronas/citología , Neuronas/efectos de los fármacos , Técnicas de Placa-Clamp , Fosforilación , Proteína Quinasa C-alfa/genética , Inhibidores de Proteínas Quinasas/farmacología , Estructura Terciaria de Proteína , Pirimidinas/farmacología , Ratas , Transducción de Señal , Transfección , Familia-src Quinasas/antagonistas & inhibidores , Familia-src Quinasas/genética
11.
Circ Res ; 109(3): 255-61, 2011 Jul 22.
Artículo en Inglés | MEDLINE | ID: mdl-21700933

RESUMEN

RATIONALE: L-type Ca(2+) (Ca(V)1.2) channels shape the cardiac action potential waveform and are essential for excitation-contraction coupling in heart. A gain-of-function G406R mutation in a cytoplasmic loop of Ca(V)1.2 channels causes long QT syndrome 8 (LQT8), a disease also known as Timothy syndrome. However, the mechanisms by which this mutation enhances Ca(V)1.2-LQT8 currents and generates lethal arrhythmias are unclear. OBJECTIVE: To test the hypothesis that the anchoring protein AKAP150 modulates Ca(V)1.2-LQT8 channel gating in ventricular myocytes. METHODS AND RESULTS: Using a combination of molecular, imaging, and electrophysiological approaches, we discovered that Ca(V)1.2-LQT8 channels are abnormally coupled to AKAP150. A pathophysiological consequence of forming this aberrant ion channel-anchoring protein complex is enhanced Ca(V)1.2-LQT8 currents. This occurs through a mechanism whereby the anchoring protein functions like a subunit of Ca(V)1.2-LQT8 channels that stabilizes the open conformation and augments the probability of coordinated openings of these channels. Ablation of AKAP150 restores normal gating in Ca(V)1.2-LQT8 channels and protects the heart from arrhythmias. CONCLUSION: We propose that AKAP150-dependent changes in Ca(V)1.2-LQT8 channel gating may constitute a novel general mechanism for Ca(V)1.2-driven arrhythmias.


Asunto(s)
Proteínas de Anclaje a la Quinasa A/genética , Canales de Calcio Tipo L/genética , Síndrome de QT Prolongado/genética , Síndrome de QT Prolongado/fisiopatología , Miocitos Cardíacos/fisiología , Sindactilia/genética , Sindactilia/fisiopatología , Proteínas de Anclaje a la Quinasa A/química , Proteínas de Anclaje a la Quinasa A/metabolismo , Potenciales de Acción/fisiología , Factores de Edad , Animales , Arritmias Cardíacas/genética , Arritmias Cardíacas/metabolismo , Arritmias Cardíacas/fisiopatología , Trastorno Autístico , Calcio/metabolismo , Canales de Calcio Tipo L/química , Canales de Calcio Tipo L/metabolismo , Cardiomegalia/genética , Cardiomegalia/metabolismo , Cardiomegalia/fisiopatología , Activación del Canal Iónico/fisiología , Síndrome de QT Prolongado/metabolismo , Ratones , Ratones Transgénicos , Contracción Miocárdica/fisiología , Dominios y Motivos de Interacción de Proteínas/fisiología , Sindactilia/metabolismo
12.
Circ Res ; 108(7): 837-46, 2011 Apr 01.
Artículo en Inglés | MEDLINE | ID: mdl-21311045

RESUMEN

RATIONALE: Mitochondrial dysfunction has been implicated in several cardiovascular diseases; however, the roles of mitochondrial oxidative stress and DNA damage in hypertensive cardiomyopathy are not well understood. OBJECTIVE: We evaluated the contribution of mitochondrial reactive oxygen species (ROS) to cardiac hypertrophy and failure by using genetic mouse models overexpressing catalase targeted to mitochondria and to peroxisomes. METHODS AND RESULTS: Angiotensin II increases mitochondrial ROS in cardiomyocytes, concomitant with increased mitochondrial protein carbonyls, mitochondrial DNA deletions, increased autophagy and signaling for mitochondrial biogenesis in hearts of angiotensin II-treated mice. The causal role of mitochondrial ROS in angiotensin II-induced cardiomyopathy is shown by the observation that mice that overexpress catalase targeted to mitochondria, but not mice that overexpress wild-type peroxisomal catalase, are resistant to cardiac hypertrophy, fibrosis and mitochondrial damage induced by angiotensin II, as well as heart failure induced by overexpression of Gαq. Furthermore, primary damage to mitochondrial DNA, induced by zidovudine administration or homozygous mutation of mitochondrial polymerase γ, is also shown to contribute directly to the development of cardiac hypertrophy, fibrosis and failure. CONCLUSIONS: These data indicate the critical role of mitochondrial ROS in cardiac hypertrophy and failure and support the potential use of mitochondrial-targeted antioxidants for prevention and treatment of hypertensive cardiomyopathy.


Asunto(s)
Angiotensina II/farmacología , Cardiomegalia/fisiopatología , Subunidades alfa de la Proteína de Unión al GTP Gq-G11/metabolismo , Insuficiencia Cardíaca/fisiopatología , Mitocondrias Cardíacas/fisiología , Estrés Oxidativo/fisiología , Angiotensina II/efectos adversos , Animales , Cardiomegalia/inducido químicamente , Catalasa/genética , Catalasa/metabolismo , Daño del ADN/fisiología , ADN Mitocondrial/efectos de los fármacos , Subunidades alfa de la Proteína de Unión al GTP Gq-G11/genética , Regulación de la Expresión Génica/efectos de los fármacos , Insuficiencia Cardíaca/metabolismo , Ratones , Ratones Transgénicos , Modelos Animales , Miocitos Cardíacos/metabolismo , Especies Reactivas de Oxígeno/metabolismo , Inhibidores de la Transcriptasa Inversa/farmacología , Zidovudina/farmacología
13.
Circ Res ; 106(4): 748-56, 2010 Mar 05.
Artículo en Inglés | MEDLINE | ID: mdl-20110531

RESUMEN

RATIONALE: L-Type (Cav1.2) Ca(2+) channels are critical regulators of muscle and neural function. Although Cav1.2 channel activity varies regionally, little is known about the mechanisms underlying this heterogeneity. OBJECTIVE: To test the hypothesis that Cav1.2 channels can gate coordinately. METHODS AND RESULTS: We used optical and electrophysiological approaches to record Cav1.2 channel activity in cardiac, smooth muscle, and tsA-201 cells expressing Cav1.2 channels. Consistent with our hypothesis, we found that small clusters of Cav1.2 channels can open and close in tandem. Fluorescence resonance energy transfer and electrophysiological studies suggest that this coupling of Cav1.2 channels involves transient interactions between neighboring channels via their C termini. The frequency of coupled gating events increases in hypertensive smooth muscle and in cells expressing a mutant Cav1.2 channel that causes arrhythmias and autism in humans with Timothy syndrome (LQT8). CONCLUSIONS: Coupled gating of Cav1.2 channels may represent a novel mechanism for the regulation of Ca(2+) influx and excitability in neurons, cardiac, and arterial smooth muscle under physiological and pathological conditions.


Asunto(s)
Canales de Calcio Tipo L/metabolismo , Señalización del Calcio , Hipertensión/metabolismo , Activación del Canal Iónico , Síndrome de QT Prolongado/metabolismo , Músculo Liso Vascular/metabolismo , Miocitos Cardíacos/metabolismo , Miocitos del Músculo Liso/metabolismo , Proteínas de Anclaje a la Quinasa A/genética , Proteínas de Anclaje a la Quinasa A/metabolismo , Animales , Canales de Calcio Tipo L/efectos de los fármacos , Canales de Calcio Tipo L/genética , Señalización del Calcio/efectos de los fármacos , Proteínas Quinasas Dependientes de Calcio-Calmodulina/antagonistas & inhibidores , Proteínas Quinasas Dependientes de Calcio-Calmodulina/metabolismo , Calmodulina/metabolismo , Células Cultivadas , Activación Enzimática , Activadores de Enzimas/farmacología , Transferencia Resonante de Energía de Fluorescencia , Humanos , Hipertensión/genética , Hipertensión/fisiopatología , Activación del Canal Iónico/efectos de los fármacos , Síndrome de QT Prolongado/genética , Síndrome de QT Prolongado/fisiopatología , Potenciales de la Membrana , Ratones , Ratones Noqueados , Microscopía Confocal , Músculo Liso Vascular/efectos de los fármacos , Mutación , Miocitos Cardíacos/efectos de los fármacos , Miocitos del Músculo Liso/efectos de los fármacos , Técnicas de Placa-Clamp , Proteína Quinasa C-alfa/genética , Proteína Quinasa C-alfa/metabolismo , Inhibidores de Proteínas Quinasas/farmacología , Estructura Terciaria de Proteína , Transporte de Proteínas , Conejos , Ratas , Ratas Sprague-Dawley , Proteínas Recombinantes de Fusión/metabolismo , Factores de Tiempo , Transfección
14.
Circ Res ; 107(6): 747-56, 2010 Sep 17.
Artículo en Inglés | MEDLINE | ID: mdl-20671242

RESUMEN

RATIONALE: Sympathetic stimulation of the heart increases the force of contraction and rate of ventricular relaxation by triggering protein kinase (PK)A-dependent phosphorylation of proteins that regulate intracellular calcium. We hypothesized that scaffolding of cAMP signaling complexes by AKAP5 is required for efficient sympathetic stimulation of calcium transients. OBJECTIVE: We examined the function of AKAP5 in the ß-adrenergic signaling cascade. METHODS AND RESULTS: We used calcium imaging and electrophysiology to examine the sympathetic response of cardiomyocytes isolated from wild type and AKAP5 mutant animals. The ß-adrenergic regulation of calcium transients and the phosphorylation of substrates involved in calcium handling were disrupted in AKAP5 knockout cardiomyocytes. The scaffolding protein, AKAP5 (also called AKAP150/79), targets adenylyl cyclase, PKA, and calcineurin to a caveolin 3-associated complex in ventricular myocytes that also binds a unique subpopulation of Ca(v)1.2 L-type calcium channels. Only the caveolin 3-associated Ca(v)1.2 channels are phosphorylated by PKA in response to sympathetic stimulation in wild-type heart. However, in the AKAP5 knockout heart, the organization of this signaling complex is disrupted, adenylyl cyclase 5/6 no longer associates with caveolin 3 in the T-tubules, and noncaveolin 3-associated calcium channels become phosphorylated after ß-adrenergic stimulation, although this does not lead to an enhanced calcium transient. The signaling domain created by AKAP5 is also essential for the PKA-dependent phosphorylation of ryanodine receptors and phospholamban. CONCLUSIONS: These findings identify an AKAP5-organized signaling module that is associated with caveolin 3 and is essential for sympathetic stimulation of the calcium transient in adult heart cells.


Asunto(s)
Proteínas de Anclaje a la Quinasa A/metabolismo , Canales de Calcio Tipo L/metabolismo , Miocitos Cardíacos/metabolismo , Receptores Adrenérgicos beta/fisiología , Sistema Nervioso Simpático/fisiología , Proteínas de Anclaje a la Quinasa A/fisiología , Factores de Edad , Animales , Señalización del Calcio/efectos de los fármacos , Señalización del Calcio/fisiología , Células Cultivadas , AMP Cíclico/fisiología , Proteínas Quinasas Dependientes de AMP Cíclico/fisiología , Isoproterenol/farmacología , Ratones , Ratones Endogámicos C57BL , Ratones Noqueados , Miocitos Cardíacos/efectos de los fármacos , Miocitos Cardíacos/fisiología , Transducción de Señal/efectos de los fármacos , Transducción de Señal/fisiología , Sistema Nervioso Simpático/efectos de los fármacos , Sistema Nervioso Simpático/metabolismo
15.
J Biol Chem ; 285(53): 41491-500, 2010 Dec 31.
Artículo en Inglés | MEDLINE | ID: mdl-20974857

RESUMEN

Secreted phospholipase A(2) group X (sPLA(2)-X) has recently been identified in the airways of patients with asthma and may participate in cysteinyl leukotriene (CysLT; C(4), D(4), and E(4)) synthesis. We examined CysLT synthesis and arachidonic acid (AA) and lysophospholipid release by eosinophils mediated by recombinant human sPLA(2)-X. We found that recombinant sPLA(2)-X caused marked AA release and a rapid onset of CysLT synthesis in human eosinophils that was blocked by a selective sPLA(2)-X inhibitor. Exogenous sPLA(2)-X released lysophospholipid species that arise from phospholipids enriched in AA in eosinophils, including phosphatidylcholine, phosphatidylinositol, and phosphatidylethanolamine as well as plasmenyl phosphatidylcholine and phosphatidylethanolamine. CysLT synthesis mediated by sPLA(2)-X but not AA release could be suppressed by inhibition of cPLA(2)α. Exogenous sPLA(2)-X initiated Ser(505) phosphorylation of cPLA(2)α, an intracellular Ca(2+) flux, and translocation of cPLA(2)α and 5-lipoxygenase in eosinophils. Synthesis of CysLTs in response to sPLA(2)-X or lysophosphatidylcholine was inhibited by p38 or JNK inhibitors but not by a MEK 1/2 inhibitor. A further increase in CysLT synthesis was induced by the addition of sPLA(2)-X to eosinophils under conditions of N-formyl-methionyl-leucyl-phenylalanine-mediated cPLA(2)α activation. These results indicate that sPLA(2)-X participates in AA and lysophospholipid release, resulting in CysLT synthesis in eosinophils through a mechanism involving p38 and JNK MAPK, cPLA(2)α, and 5-lipoxygenase activation and resulting in the amplification of CysLT synthesis during cPLA(2)α activation. Transactivation of eosinophils by sPLA(2)-X may be an important mechanism leading to CysLT formation in the airways of patients with asthma.


Asunto(s)
Cisteína/biosíntesis , Eosinófilos/enzimología , Leucotrienos/biosíntesis , Fosfolipasas A2/metabolismo , Proteínas Quinasas p38 Activadas por Mitógenos/metabolismo , Asma/tratamiento farmacológico , Calcio/química , Eicosanoides/química , Eosinófilos/metabolismo , Fosfolipasas A2 Grupo X/química , Humanos , Leucotrienos/química , Lisofosfolípidos/química , N-Formilmetionina Leucil-Fenilalanina/farmacología , Fosforilación , Proteínas Recombinantes/química , Serina/química
16.
Am J Physiol Heart Circ Physiol ; 301(6): H2285-94, 2011 Dec.
Artículo en Inglés | MEDLINE | ID: mdl-21984539

RESUMEN

Ca(+) sparklets are subcellular Ca(2+) signals produced by the opening of sarcolemmal L-type Ca(2+) channels. Ca(2+) sparklet activity varies within the sarcolemma of arterial myocytes. In this study, we examined the relationship between Ca(2+) sparklet activity and sarcoplasmic reticulum (SR) Ca(2+) accumulation and release in cerebral arterial myocytes. Our data indicate that the SR is a vast organelle with multiple regions near the sarcolemma of these cells. Ca(2+) sparklet sites were located at or <0.2 µm from SR-sarcolemmal junctions. We found that while Ca(2+) sparklets increase the rate of SR Ca(2+) refilling in arterial myocytes, their activity did not induce regional variations in SR Ca(2+) content or Ca(2+) spark activity. In arterial myocytes, L-type Ca(2+) channel activity was independent of SR Ca(2+) load. This ruled out a potential feedback mechanism whereby SR Ca(2+) load regulates the activity of these channels. Together, our data suggest a model in which Ca(2+) sparklets contribute Ca(2+) influx into a cytosolic Ca(2+) pool from which sarco(endo)plasmic reticulum Ca(2+)-ATPase pumps Ca(2+) into the SR, indirectly regulating SR function.


Asunto(s)
Señalización del Calcio , Calcio/metabolismo , Músculo Liso Vascular/metabolismo , Miocitos del Músculo Liso/metabolismo , Sarcolema/metabolismo , Retículo Sarcoplasmático/metabolismo , Animales , Canales de Calcio Tipo L/metabolismo , Arterias Cerebrales/metabolismo , Proteínas Luminiscentes/biosíntesis , Proteínas Luminiscentes/genética , Microscopía Confocal , Microscopía Fluorescente , Músculo Liso Vascular/citología , Señales de Clasificación de Proteína , Ratas , Ratas Sprague-Dawley , Proteínas Recombinantes de Fusión/biosíntesis , Canal Liberador de Calcio Receptor de Rianodina/metabolismo , ATPasas Transportadoras de Calcio del Retículo Sarcoplásmico/metabolismo , Factores de Tiempo , Transfección , Proteína Fluorescente Roja
17.
J Biomed Biotechnol ; 2011: 382586, 2011.
Artículo en Inglés | MEDLINE | ID: mdl-22131804

RESUMEN

The fidelity of excitation-contraction (EC) coupling in ventricular myocytes is remarkable, with each action potential evoking a [Ca²âº](i) transient. The prevalent model is that the consistency in EC coupling in ventricular myocytes is due to the formation of fixed, tight junctions between the sarcoplasmic reticulum (SR) and the sarcolemma where Ca²âº release is activated. Here, we tested the hypothesis that the SR is a structurally inert organelle in ventricular myocytes. Our data suggest that rather than being static, the SR undergoes frequent dynamic structural changes. SR boutons expressing functional ryanodine receptors moved throughout the cell, approaching or moving away from the sarcolemma of ventricular myocytes. These changes in SR structure occurred in the absence of changes in [Ca²âº](i) during EC coupling. Microtubules and the molecular motors dynein and kinesin 1(Kif5b) were important regulators of SR motility. These findings support a model in which the SR is a motile organelle capable of molecular motor protein-driven structural changes.


Asunto(s)
Calcio/metabolismo , Acoplamiento Excitación-Contracción/fisiología , Miocitos Cardíacos/ultraestructura , Retículo Sarcoplasmático/fisiología , Potenciales de Acción , Animales , Vectores Genéticos , Ventrículos Cardíacos/metabolismo , Ventrículos Cardíacos/ultraestructura , Humanos , Cinesinas/genética , Masculino , Miocitos Cardíacos/metabolismo , Ratas , Ratas Sprague-Dawley , Canal Liberador de Calcio Receptor de Rianodina/genética , Canal Liberador de Calcio Receptor de Rianodina/metabolismo , Sarcolema/metabolismo , Retículo Sarcoplasmático/metabolismo , Retículo Sarcoplasmático/ultraestructura
18.
Proc Natl Acad Sci U S A ; 105(40): 15623-8, 2008 Oct 07.
Artículo en Inglés | MEDLINE | ID: mdl-18832165

RESUMEN

Many excitable cells express L-type Ca(2+) channels (LTCCs), which participate in physiological and pathophysiological processes ranging from memory, secretion, and contraction to epilepsy, heart failure, and hypertension. Clusters of LTCCs can operate in a PKCalpha-dependent, high open probability mode that generates sites of sustained Ca(2+) influx called "persistent Ca(2+) sparklets." Although increased LTCC activity is necessary for the development of vascular dysfunction during hypertension, the mechanisms leading to increased LTCC function are unclear. Here, we tested the hypothesis that increased PKCalpha and persistent Ca(2+) sparklet activity contributes to arterial dysfunction during hypertension. We found that PKCalpha and persistent Ca(2+) sparklet activity is indeed increased in arterial myocytes during hypertension. Furthermore, in human arterial myocytes, PKCalpha-dependent persistent Ca(2+) sparklets activated the prohypertensive calcineurin/NFATc3 signaling cascade. These events culminated in three hallmark signs of hypertension-associated vascular dysfunction: increased Ca(2+) entry, elevated arterial [Ca(2+)](i), and enhanced myogenic tone. Consistent with these observations, we show that PKCalpha ablation is protective against the development of angiotensin II-induced hypertension. These data support a model in which persistent Ca(2+) sparklets, PKCalpha, and calcineurin form a subcellular signaling triad controlling NFATc3-dependent gene expression, arterial function, and blood pressure. Because of the ubiquity of these proteins, this model may represent a general signaling pathway controlling gene expression and cellular function.


Asunto(s)
Calcio/metabolismo , Hipertensión/metabolismo , Músculo Liso Vascular/metabolismo , Factores de Transcripción NFATC/metabolismo , Transducción de Señal , Angiotensina II/administración & dosificación , Animales , Arterias/metabolismo , Canales de Calcio Tipo L/metabolismo , Humanos , Ratones , Ratones Noqueados , Factores de Transcripción NFATC/genética , Proteína Quinasa C-alfa/metabolismo , Ratas , Ratas Sprague-Dawley
20.
J Mol Cell Cardiol ; 49(2): 330-3, 2010 Aug.
Artículo en Inglés | MEDLINE | ID: mdl-20353794

RESUMEN

In ventricular myocytes, activation of protein kinase A (PKA) by 3'-5' cyclic adenosine monophosphate (cAMP) increases the force of contraction by increasing L-type Ca(2+) channel currents (I(Ca)) and sarcoplasmic reticulum (SR) Ca(2+) release during excitation-contraction coupling. Cyclic-nucleotide phosphodiesterases (PDEs) comprise a large family of enzymes whose role in the cell is to regulate the spatial and temporal profile of cAMP signals by controlling the degradation of this second messenger. At present, however, the molecular identity and functional roles of the PDEs expressed in ventricular myocytes are incompletely understood. Here, we tested the hypothesis that PDE8A plays a critical role in the modulation of at least one compartment of cAMP and hence PKA activity during beta-adrenergic receptor (betaAR) activation in ventricular myocytes. Consistent with this hypothesis, we found that PDE8A transcript and protein are expressed in ventricular myocytes. Our data indicate that evoked [Ca(2+)](i) transients and I(Ca) increased to a much larger extent in PDE8A null (PDE8A(-/-)) than in wild-type (WT) myocytes during beta-adrenergic signaling activation. In addition, Ca(2+) spark activity was higher in PDE8A(-/-) than in WT myocytes. Our data indicate that PDE8A is a novel cardiac PDE that controls one or more pools of cAMP implicated in regulation of Ca(2+) movement through cardiomyocyte.


Asunto(s)
3',5'-AMP Cíclico Fosfodiesterasas/metabolismo , Acoplamiento Excitación-Contracción , Ventrículos Cardíacos/citología , Miocitos Cardíacos/enzimología , Animales , Acoplamiento Excitación-Contracción/efectos de los fármacos , Activación del Canal Iónico/efectos de los fármacos , Isoproterenol/farmacología , Ratones , Miocardio/enzimología , Miocitos Cardíacos/efectos de los fármacos , Retículo Sarcoplasmático/efectos de los fármacos , Retículo Sarcoplasmático/metabolismo
SELECCIÓN DE REFERENCIAS
DETALLE DE LA BÚSQUEDA