Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 20 de 25
Filtrar
1.
Mol Cell ; 81(14): 2929-2943.e6, 2021 07 15.
Artículo en Inglés | MEDLINE | ID: mdl-34166608

RESUMEN

The HCN1-4 channel family is responsible for the hyperpolarization-activated cation current If/Ih that controls automaticity in cardiac and neuronal pacemaker cells. We present cryoelectron microscopy (cryo-EM) structures of HCN4 in the presence or absence of bound cAMP, displaying the pore domain in closed and open conformations. Analysis of cAMP-bound and -unbound structures sheds light on how ligand-induced transitions in the channel cytosolic portion mediate the effect of cAMP on channel gating and highlights the regulatory role of a Mg2+ coordination site formed between the C-linker and the S4-S5 linker. Comparison of open/closed pore states shows that the cytosolic gate opens through concerted movements of the S5 and S6 transmembrane helices. Furthermore, in combination with molecular dynamics analyses, the open pore structures provide insights into the mechanisms of K+/Na+ permeation. Our results contribute mechanistic understanding on HCN channel gating, cyclic nucleotide-dependent modulation, and ion permeation.


Asunto(s)
Permeabilidad de la Membrana Celular/fisiología , Canales Regulados por Nucleótidos Cíclicos Activados por Hiperpolarización/metabolismo , Activación del Canal Iónico/fisiología , Iones/metabolismo , Proteínas Musculares/metabolismo , Canales de Potasio/metabolismo , Línea Celular , Microscopía por Crioelectrón/métodos , AMP Cíclico/metabolismo , Células HEK293 , Humanos
2.
J Neurosci ; 43(41): 6930-6949, 2023 10 11.
Artículo en Inglés | MEDLINE | ID: mdl-37643861

RESUMEN

A significant proportion of temporal lobe epilepsy (TLE) patients experience drug-resistant seizures associated with mesial temporal sclerosis, in which there is extensive cell loss in the hippocampal CA1 and CA3 subfields, with a relative sparing of dentate gyrus granule cells and CA2 pyramidal neurons (PNs). A role for CA2 in seizure generation was suggested based on findings of a reduction in CA2 synaptic inhibition (Williamson and Spencer, 1994) and the presence of interictal-like spike activity in CA2 in resected hippocampal tissue from TLE patients (Wittner et al., 2009). We recently found that in the pilocarpine-induced status epilepticus (PILO-SE) mouse model of TLE there was an increase in CA2 intrinsic excitability associated with a loss of CA2 synaptic inhibition. Furthermore, chemogenetic silencing of CA2 significantly reduced seizure frequency, consistent with a role of CA2 in promoting seizure generation and/or propagation (Whitebirch et al., 2022). In the present study, we explored the cellular basis of this inhibitory deficit using immunohistochemical and electrophysiological approaches in PILO-SE male and female mice. We report a widespread decrease in the density of pro-cholecystokinin-immunopositive (CCK+) interneurons and a functional impairment of CCK+ interneuron-mediated inhibition of CA2 PNs. We also found a disruption in the perisomatic perineuronal net in the CA2 stratum pyramidale. Such pathologic alterations may contribute to an enhanced excitation of CA2 PNs and CA2-dependent seizure activity in the PILO-SE mouse model.SIGNIFICANCE STATEMENT Impaired synaptic inhibition in hippocampal circuits has been identified as a key feature that contributes to the emergence and propagation of seizure activity in human patients and animal models of temporal lobe epilepsy (TLE). Among the hippocampal subfields, the CA2 region is particularly resilient to seizure-associated neurodegeneration and has been suggested to play a key role in seizure activity in TLE. Here we report that perisomatic inhibition of CA2 pyramidal neurons mediated by cholecystokinin-expressing interneurons is selectively reduced in acute hippocampal slices from epileptic mice. Parvalbumin-expressing interneurons, in contrast, appear relatively conserved in epileptic mice. These findings advance our understanding of the cellular mechanisms underlying inhibitory disruption in hippocampal circuits in a mouse model of spontaneous recurring seizures.


Asunto(s)
Epilepsia del Lóbulo Temporal , Estado Epiléptico , Humanos , Masculino , Femenino , Ratones , Animales , Región CA2 Hipocampal , Colecistoquinina , Hipocampo/fisiología , Interneuronas/fisiología , Convulsiones , Pilocarpina/toxicidad , Modelos Animales de Enfermedad
3.
Annu Rev Pharmacol Toxicol ; 60: 109-131, 2020 01 06.
Artículo en Inglés | MEDLINE | ID: mdl-31914897

RESUMEN

The hyperpolarization-activated cyclic nucleotide-gated (HCN) channels are voltage-gated ion channels that critically modulate neuronal activity. Four HCN subunits (HCN1-4) have been cloned, each having a unique expression profile and distinctive effects on neuronal excitability within the brain. Consistent with this, the expression and function of these subunits are altered in diverse ways in neurological disorders. Here, we review current knowledge on the structure and distribution of the individual HCN channel isoforms, their effects on neuronal activity under physiological conditions, and how their expression and function are altered in neurological disorders, particularly epilepsy, neuropathic pain, and affective disorders. We discuss the suitability of HCN channels as therapeutic targets and how drugs might be strategically designed to specifically act on particular isoforms. We conclude that medicines that target individual HCN isoforms and/or their auxiliary subunit, TRIP8b, may provide valuable means of treating distinct neurological conditions.


Asunto(s)
Diseño de Fármacos , Canales Regulados por Nucleótidos Cíclicos Activados por Hiperpolarización/efectos de los fármacos , Enfermedades del Sistema Nervioso/tratamiento farmacológico , Animales , Humanos , Canales Regulados por Nucleótidos Cíclicos Activados por Hiperpolarización/química , Canales Regulados por Nucleótidos Cíclicos Activados por Hiperpolarización/metabolismo , Enfermedades del Sistema Nervioso/fisiopatología , Neuronas/metabolismo , Isoformas de Proteínas , Receptores Citoplasmáticos y Nucleares/metabolismo
4.
J Neurosci ; 41(39): 8103-8110, 2021 09 29.
Artículo en Inglés | MEDLINE | ID: mdl-34385360

RESUMEN

Entorhinal cortex neurons make monosynaptic connections onto distal apical dendrites of CA1 and CA2 pyramidal neurons through the perforant path (PP) projection. Previous studies show that differences in dendritic properties and synaptic input density enable the PP inputs to produce a much stronger excitation of CA2 compared with CA1 pyramidal neurons. Here, using mice of both sexes, we report that the difference in PP efficacy varies substantially as a function of presynaptic firing rate. Although a single PP stimulus evokes a 5- to 6-fold greater EPSP in CA2 compared with CA1, a brief high-frequency train of PP stimuli evokes a strongly facilitating postsynaptic response in CA1, with relatively little change in CA2. Furthermore, we demonstrate that blockade of NMDARs significantly reduces strong temporal summation in CA1 but has little impact on that in CA2. As a result of the differences in the frequency- and NMDAR-dependent temporal summation, naturalistic patterns of presynaptic activity evoke CA1 and CA2 responses with distinct dynamics, differentially tuning CA1 and CA2 responses to bursts of presynaptic firing versus single presynaptic spikes, respectively.SIGNIFICANCE STATEMENT Recent studies have demonstrated that abundant entorhinal cortical innervation and efficient dendritic propagation enable hippocampal CA2 pyramidal neurons to produce robust excitation evoked by single cortical stimuli, compared with CA1. Here we uncovered, unexpectedly, that the difference in efficacy of cortical excitation varies substantially as a function of presynaptic firing rate. A burst of stimuli evokes a strongly facilitating response in CA1, but not in CA2. As a result, the postsynaptic response of CA1 and CA2 to presynaptic naturalistic firing displays contrasting temporal dynamics, which depends on the activation of NMDARs. Thus, whereas CA2 responds to single stimuli, CA1 is selectively recruited by bursts of cortical input.


Asunto(s)
Región CA1 Hipocampal/fisiología , Región CA2 Hipocampal/fisiología , Corteza Cerebral/fisiología , Potenciales Postsinápticos Excitadores/fisiología , Células Piramidales/fisiología , Sinapsis/fisiología , Animales , Región CA1 Hipocampal/efectos de los fármacos , Región CA2 Hipocampal/efectos de los fármacos , Corteza Cerebral/efectos de los fármacos , Potenciales Postsinápticos Excitadores/efectos de los fármacos , Femenino , Antagonistas de Receptores de GABA-A/farmacología , Antagonistas de Receptores de GABA-B/farmacología , Masculino , Ratones , Vías Nerviosas/efectos de los fármacos , Vías Nerviosas/fisiología , Técnicas de Placa-Clamp , Células Piramidales/efectos de los fármacos , Sinapsis/efectos de los fármacos
5.
Brain ; 144(7): 2060-2073, 2021 08 17.
Artículo en Inglés | MEDLINE | ID: mdl-33822003

RESUMEN

Pathogenic variants in HCN1 are associated with developmental and epileptic encephalopathies. The recurrent de novo HCN1 M305L pathogenic variant is associated with severe developmental impairment and drug-resistant epilepsy. We engineered the homologue Hcn1 M294L heterozygous knock-in (Hcn1M294L) mouse to explore the disease mechanism underlying an HCN1 developmental and epileptic encephalopathy. The Hcn1M294L mouse recapitulated the phenotypic features of patients with the HCN1 M305L variant, including spontaneous seizures and a learning deficit. Active epileptiform spiking on the electrocorticogram and morphological markers typical of rodent seizure models were observed in the Hcn1M294L mouse. Lamotrigine exacerbated seizures and increased spiking, whereas sodium valproate reduced spiking, mirroring drug responses reported in a patient with this variant. Functional analysis in Xenopus laevis oocytes and layer V somatosensory cortical pyramidal neurons in ex vivo tissue revealed a loss of voltage dependence for the disease variant resulting in a constitutively open channel that allowed for cation 'leak' at depolarized membrane potentials. Consequently, Hcn1M294L layer V somatosensory cortical pyramidal neurons were significantly depolarized at rest. These neurons adapted through a depolarizing shift in action potential threshold. Despite this compensation, layer V somatosensory cortical pyramidal neurons fired action potentials more readily from rest. A similar depolarized resting potential and left-shift in rheobase was observed for CA1 hippocampal pyramidal neurons. The Hcn1M294L mouse provides insight into the pathological mechanisms underlying hyperexcitability in HCN1 developmental and epileptic encephalopathy, as well as being a preclinical model with strong construct and face validity, on which potential treatments can be tested.


Asunto(s)
Encefalopatías/metabolismo , Modelos Animales de Enfermedad , Epilepsia/metabolismo , Canales Regulados por Nucleótidos Cíclicos Activados por Hiperpolarización/metabolismo , Neuronas/metabolismo , Canales de Potasio/metabolismo , Animales , Encefalopatías/genética , Epilepsia/genética , Femenino , Canales Regulados por Nucleótidos Cíclicos Activados por Hiperpolarización/genética , Masculino , Ratones , Ratones Mutantes , Mutación , Neuronas/patología , Canales de Potasio/genética , Células Piramidales/metabolismo , Xenopus laevis
6.
J Biol Chem ; 293(33): 12908-12918, 2018 08 17.
Artículo en Inglés | MEDLINE | ID: mdl-29936413

RESUMEN

Hyperpolarization-activated cyclic nucleotide-gated cation (HCN) channels play a critical role in the control of pacemaking in the heart and repetitive firing in neurons. In HCN channels, the intracellular cyclic nucleotide-binding domain (CNBD) is connected to the transmembrane portion of the channel (TMPC) through a helical domain, the C-linker. Although this domain is critical for mechanical signal transduction, the conformational dynamics in the C-linker that transmit the nucleotide-binding signal to the HCN channel pore are unknown. Here, we use linear response theory to analyze conformational changes in the C-linker of the human HCN1 protein, which couple cAMP binding in the CNBD with gating in the TMPC. By applying a force to the tip of the so-called "elbow" of the C-linker, the coarse-grained calculations recapitulate the same conformational changes triggered by cAMP binding in experimental studies. Furthermore, in our simulations, a displacement of the C-linker parallel to the membrane plane (i.e. horizontally) induced a rotational movement resulting in a distinct tilting of the transmembrane helices. This movement, in turn, increased the distance between the voltage-sensing S4 domain and the surrounding transmembrane domains and led to a widening of the intracellular channel gate. In conclusion, our computational approach, combined with experimental data, thus provides a more detailed understanding of how cAMP binding is mechanically coupled over long distances to promote voltage-dependent opening of HCN channels.


Asunto(s)
Membrana Celular/química , AMP Cíclico/química , Canales Regulados por Nucleótidos Cíclicos Activados por Hiperpolarización/química , Modelos Químicos , Canales de Potasio/química , Membrana Celular/metabolismo , AMP Cíclico/metabolismo , Humanos , Canales Regulados por Nucleótidos Cíclicos Activados por Hiperpolarización/metabolismo , Canales de Potasio/metabolismo , Dominios Proteicos
7.
J Neurosci ; 37(12): 3276-3293, 2017 03 22.
Artículo en Inglés | MEDLINE | ID: mdl-28213444

RESUMEN

The impact of a given neuronal pathway depends on the number of synapses it makes with its postsynaptic target, the strength of each individual synapse, and the integrative properties of the postsynaptic dendrites. Here we explore the cellular and synaptic mechanisms responsible for the differential excitatory drive from the entorhinal cortical pathway onto mouse CA2 compared with CA1 pyramidal neurons (PNs). Although both types of neurons receive direct input from entorhinal cortex onto their distal dendrites, these inputs produce a 5- to 6-fold larger EPSP at the soma of CA2 compared with CA1 PNs, which is sufficient to drive action potential output from CA2 but not CA1. Experimental and computational approaches reveal that dendritic propagation is more efficient in CA2 than CA1 as a result of differences in dendritic morphology and dendritic expression of the hyperpolarization-activated cation current (Ih). Furthermore, there are three times as many cortical inputs onto CA2 compared with CA1 PN distal dendrites. Using a computational model, we demonstrate that the differences in dendritic properties of CA2 compared with CA1 PNs are necessary to enable the CA2 PNs to generate their characteristically large EPSPs in response to their cortical inputs; in contrast, CA1 dendritic properties limit the size of the EPSPs they generate, even to a similar number of cortical inputs. Thus, the matching of dendritic integrative properties with the density of innervation is crucial for the differential processing of information from the direct cortical inputs by CA2 compared with CA1 PNs.SIGNIFICANCE STATEMENT Recent discoveries have shown that the long-neglected hippocampal CA2 region has distinct synaptic properties and plays a prominent role in social memory and schizophrenia. This study addresses the puzzling finding that the direct entorhinal cortical inputs to hippocampus, which target the very distal pyramidal neuron dendrites, provide an unusually strong excitatory drive at the soma of CA2 pyramidal neurons, with EPSPs that are 5-6 times larger than those in CA1 pyramidal neurons. We here elucidate synaptic and dendritic mechanisms that account quantitatively for the marked difference in EPSP size. Our findings further demonstrate the general importance of fine-tuning the integrative properties of neuronal dendrites to their density of synaptic innervation.


Asunto(s)
Región CA1 Hipocampal/fisiología , Región CA2 Hipocampal/fisiología , Corteza Cerebral/fisiología , Dendritas/fisiología , Red Nerviosa/fisiología , Células Piramidales/fisiología , Animales , Células Cultivadas , Corteza Cerebral/citología , Dendritas/ultraestructura , Hipocampo/citología , Hipocampo/fisiología , Masculino , Ratones , Ratones Endogámicos C57BL , Vías Nerviosas/fisiología , Células Piramidales/citología , Transmisión Sináptica/fisiología
8.
Proc Natl Acad Sci U S A ; 111(40): 14577-82, 2014 Oct 07.
Artículo en Inglés | MEDLINE | ID: mdl-25197093

RESUMEN

cAMP signaling in the brain mediates several higher order neural processes. Hyperpolarization-activated cyclic nucleotide-gated (HCN) channels directly bind cAMP through their cytoplasmic cyclic nucleotide binding domain (CNBD), thus playing a unique role in brain function. Neuronal HCN channels are also regulated by tetratricopeptide repeat-containing Rab8b interacting protein (TRIP8b), an auxiliary subunit that antagonizes the effects of cAMP by interacting with the channel CNBD. To unravel the molecular mechanisms underlying the dual regulation of HCN channel activity by cAMP/TRIP8b, we determined the NMR solution structure of the HCN2 channel CNBD in the cAMP-free form and mapped on it the TRIP8b interaction site. We reconstruct here the full conformational changes induced by cAMP binding to the HCN channel CNBD. Our results show that TRIP8b does not compete with cAMP for the same binding region; rather, it exerts its inhibitory action through an allosteric mechanism, preventing the cAMP-induced conformational changes in the HCN channel CNBD.


Asunto(s)
AMP Cíclico/química , Canales Regulados por Nucleótidos Cíclicos Activados por Hiperpolarización/química , Activación del Canal Iónico , Receptores Citoplasmáticos y Nucleares/química , Sitios de Unión , Cristalografía por Rayos X , AMP Cíclico/metabolismo , Canales Catiónicos Regulados por Nucleótidos Cíclicos/química , Canales Catiónicos Regulados por Nucleótidos Cíclicos/metabolismo , Electroforesis en Gel de Poliacrilamida , Humanos , Canales Regulados por Nucleótidos Cíclicos Activados por Hiperpolarización/metabolismo , Espectroscopía de Resonancia Magnética , Modelos Moleculares , Estructura Molecular , Canales de Potasio/química , Canales de Potasio/metabolismo , Unión Proteica , Estructura Secundaria de Proteína , Estructura Terciaria de Proteína , Receptores Citoplasmáticos y Nucleares/metabolismo
9.
Neuroscience ; 2024 Jun 13.
Artículo en Inglés | MEDLINE | ID: mdl-38878815

RESUMEN

Entorhinal cortex (EC) LIII and LII glutamatergic neurons make monosynaptic connections onto distal apical dendrites of hippocampal CA1 and CA2 pyramidal neurons (PNs), respectively, through perforant path (PP) projections. We previously reported that a brief train of PP stimuli evokes strong supralinear temporal summation of excitatory postsynaptic potentials (EPSPs) in CA1 PNs that requires NMDAR activation, with relatively little summation in CA2 PNs in mice of either sex. Here we provide evidence from combined immunogold electron microscopy, cell-type specific genetic deletion and pharmacology that the NMDARs required for supralinear temporal summation of the CA1 PP EPSP are presynaptic, located in the PP terminals. Moreover, we found that the number of NMDARs in PP terminals innervating CA1 PNs is significantly greater than that found in PP terminals innervating CA2 PNs, providing a potential explanation for the difference in temporal summation in these two classes of hippocampal PNs.

10.
Nat Commun ; 15(1): 843, 2024 Jan 29.
Artículo en Inglés | MEDLINE | ID: mdl-38287019

RESUMEN

Binding of cAMP to Hyperpolarization activated cyclic nucleotide gated (HCN) channels facilitates pore opening. It is unclear why the isolated cyclic nucleotide binding domain (CNBD) displays in vitro lower affinity for cAMP than the full-length channel in patch experiments. Here we show that HCN are endowed with an affinity switch for cAMP. Alpha helices D and E, downstream of the cyclic nucleotide binding domain (CNBD), bind to and stabilize the holo CNBD in a high affinity state. These helices increase by 30-fold cAMP efficacy and affinity measured in patch clamp and ITC, respectively. We further show that helices D and E regulate affinity by interacting with helix C of the CNBD, similarly to the regulatory protein TRIP8b. Our results uncover an intramolecular mechanism whereby changes in binding affinity, rather than changes in cAMP concentration, can modulate HCN channels, adding another layer to the complex regulation of their activity.


Asunto(s)
Canales Regulados por Nucleótidos Cíclicos Activados por Hiperpolarización , Activación del Canal Iónico , Canales Regulados por Nucleótidos Cíclicos Activados por Hiperpolarización/metabolismo , Activación del Canal Iónico/fisiología , Conformación Proteica en Hélice alfa , Nucleótidos Cíclicos , Canales Catiónicos Regulados por Nucleótidos Cíclicos/genética , Canales Catiónicos Regulados por Nucleótidos Cíclicos/metabolismo
11.
J Neurosci ; 31(11): 4074-86, 2011 Mar 16.
Artículo en Inglés | MEDLINE | ID: mdl-21411649

RESUMEN

Hyperpolarization-activated cyclic nucleotide-regulated (HCN) channels in the brain associate with their auxiliary subunit TRIP8b (also known as PEX5R), a cytoplasmic protein expressed as a family of alternatively spliced isoforms. Recent in vitro and in vivo studies have shown that association of TRIP8b with HCN subunits both inhibits channel opening and alters channel membrane trafficking, with some splice variants increasing and others decreasing channel surface expression. Here, we address the structural bases of the regulatory interactions between mouse TRIP8b and HCN1. We find that HCN1 and TRIP8b interact at two distinct sites: an upstream site where the C-linker/cyclic nucleotide-binding domain of HCN1 interacts with an 80 aa domain in the conserved central core of TRIP8b; and a downstream site where the C-terminal SNL (Ser-Asn-Leu) tripeptide of the channel interacts with the tetratricopeptide repeat domain of TRIP8b. These two interaction sites play distinct functional roles in the effects of TRIP8b on HCN1 trafficking and gating. Binding at the upstream site is both necessary and sufficient for TRIP8b to inhibit channel opening. It is also sufficient to mediate the trafficking effects of those TRIP8b isoforms that downregulate channel surface expression, in combination with the trafficking motifs present in the N-terminal region of TRIP8b. In contrast, binding at the downstream interaction site serves to stabilize the C-terminal domain of TRIP8b, allowing for optimal interaction between HCN1 and TRIP8b as well as for proper assembly of the molecular complexes that mediate the effects of TRIP8b on HCN1 channel trafficking.


Asunto(s)
Canales Catiónicos Regulados por Nucleótidos Cíclicos/metabolismo , Activación del Canal Iónico/fisiología , Proteínas de la Membrana/metabolismo , Canales de Potasio/metabolismo , Empalme Alternativo/fisiología , Animales , Sitios de Unión/fisiología , Western Blotting , Electrofisiología , Canales Regulados por Nucleótidos Cíclicos Activados por Hiperpolarización , Inmunoprecipitación , Ratones , Peroxinas , Transporte de Proteínas/fisiología
12.
Neuron ; 110(19): 3121-3138.e8, 2022 10 05.
Artículo en Inglés | MEDLINE | ID: mdl-35987207

RESUMEN

The hippocampal CA2 region, an area important for social memory, has been suspected to play a role in temporal lobe epilepsy (TLE) because of its resistance to degeneration observed in neighboring CA1 and CA3 regions in both humans and rodent models of TLE. However, little is known about whether alterations in CA2 properties promote seizure generation or propagation. Here, we addressed the role of CA2 using the pilocarpine-induced status epilepticus model of TLE. Ex vivo electrophysiological recordings from acute hippocampal slices revealed a set of coordinated changes that enhance CA2 PC intrinsic excitability, reduce CA2 inhibitory input, and increase CA2 excitatory output to its major CA1 synaptic target. Moreover, selective chemogenetic silencing of CA2 pyramidal cells caused a significant decrease in the frequency of spontaneous seizures measured in vivo. These findings provide the first evidence that CA2 actively contributes to TLE seizure activity and may thus be a promising therapeutic target.


Asunto(s)
Epilepsia del Lóbulo Temporal , Animales , Región CA2 Hipocampal , Modelos Animales de Enfermedad , Epilepsia del Lóbulo Temporal/inducido químicamente , Hipocampo/fisiología , Humanos , Ratones , Pilocarpina/toxicidad , Células Piramidales/fisiología , Convulsiones/inducido químicamente
13.
Elife ; 112022 08 16.
Artículo en Inglés | MEDLINE | ID: mdl-35972069

RESUMEN

De novo mutations in voltage- and ligand-gated channels have been associated with an increasing number of cases of developmental and epileptic encephalopathies, which often fail to respond to classic antiseizure medications. Here, we examine two knock-in mouse models replicating de novo sequence variations in the human HCN1 voltage-gated channel gene, p.G391D and p.M153I (Hcn1G380D/+ and Hcn1M142I/+ in mouse), associated with severe drug-resistant neonatal- and childhood-onset epilepsy, respectively. Heterozygous mice from both lines displayed spontaneous generalized tonic-clonic seizures. Animals replicating the p.G391D variant had an overall more severe phenotype, with pronounced alterations in the levels and distribution of HCN1 protein, including disrupted targeting to the axon terminals of basket cell interneurons. In line with clinical reports from patients with pathogenic HCN1 sequence variations, administration of the antiepileptic Na+ channel antagonists lamotrigine and phenytoin resulted in the paradoxical induction of seizures in both mouse lines, consistent with an impairment in inhibitory neuron function. We also show that these variants can render HCN1 channels unresponsive to classic antagonists, indicating the need to screen mutated channels to identify novel compounds with diverse mechanism of action. Our results underscore the necessity of tailoring effective therapies for specific channel gene variants, and how strongly validated animal models may provide an invaluable tool toward reaching this objective.


Asunto(s)
Encefalopatías , Canales Iónicos Activados por Ligandos , Animales , Anticonvulsivantes , Encefalopatías/genética , Niño , Humanos , Canales Regulados por Nucleótidos Cíclicos Activados por Hiperpolarización/genética , Lamotrigina , Ratones , Fenitoína , Canales de Potasio/genética , Convulsiones/tratamiento farmacológico , Convulsiones/genética
14.
Epilepsia ; 51(8): 1624-7, 2010 Aug.
Artículo en Inglés | MEDLINE | ID: mdl-20384728

RESUMEN

Persistent down-regulation in the expression of the hyperpolarization-activated HCN1 cation channel, a key determinant of intrinsic neuronal excitability, has been observed in febrile seizure, temporal lobe epilepsy, and generalized epilepsy animal models, as well as in patients with epilepsy. However, the role and importance of HCN1 down-regulation for seizure activity is unclear. To address this question we determined the susceptibility of mice with either a general or forebrain-restricted deletion of HCN1 to limbic seizure induction by amygdala kindling or pilocarpine administration. Loss of HCN1 expression in both mouse lines is associated with higher seizure severity and higher seizure-related mortality, independent of the seizure-induction method used. Therefore, down-regulation of HCN1 associated with human epilepsy and rodent models may be a contributing factor in seizure behavior.


Asunto(s)
Canales Catiónicos Regulados por Nucleótidos Cíclicos/deficiencia , Canales de Potasio/deficiencia , Convulsiones/genética , Convulsiones/mortalidad , Convulsiones/fisiopatología , Animales , Modelos Animales de Enfermedad , Miembro Posterior/efectos de los fármacos , Miembro Posterior/fisiopatología , Canales Regulados por Nucleótidos Cíclicos Activados por Hiperpolarización , Excitación Neurológica/genética , Excitación Neurológica/fisiología , Ratones , Ratones Endogámicos C57BL , Ratones Noqueados , Agonistas Muscarínicos/efectos adversos , Pilocarpina/efectos adversos , Convulsiones/inducido químicamente , Índice de Severidad de la Enfermedad
15.
Pflugers Arch ; 458(5): 877-89, 2009 Sep.
Artículo en Inglés | MEDLINE | ID: mdl-19544068

RESUMEN

Hyperpolarisation-activation of HCN ion channels relies on the movement of a charged S4 transmembrane helix, preferentially stabilising the open conformation of the ion pore gate. The open state is additionally stabilised, (a) when cyclic AMP (cAMP) is bound to a cytoplasmic C-terminal domain or (b) when the "mode I" open state formed initially by gate opening undergoes a "mode shift" into a "mode II" open state with a new S4 conformation. We isolated a mutation (lysine 381 to glutamate) in S4 of mouse HCN4; patch-clamp of homomeric channels in excised inside-out membranes revealed a conditional phenotype. When cAMP-liganded K381E channels are previously activated by hyperpolarisation, tens of seconds are required for complete deactivation at a weakly depolarised potential; this "ultra-sustained activation" is not observed without cAMP. Whilst cAMP slows deactivation of wild-type channels, the K381E mutation amplifies this effect to enable extraordinary kinetic stabilisation of the open state. K381E channels retain S4-gate coupling, with strong voltage dependence of the rate-limiting step for deactivation of mode II channels near -40 mV. At these voltages, the mode I deactivation pathway shows a different rate-limiting step, lacking strong voltage or cAMP dependence. Ultra-sustained activation thus reflects stabilisation of the mode II open state by the K381E mutation in synergistic combination with cAMP binding. Thus, the voltage-sensing domain is subject to strong functional coupling not only to the pore domain but also to the cytoplasmic cAMP-sensing domain in a manner specific to the voltage sensor conformation.


Asunto(s)
Sustitución de Aminoácidos/fisiología , AMP Cíclico/metabolismo , Canales Catiónicos Regulados por Nucleótidos Cíclicos/fisiología , Activación del Canal Iónico/fisiología , Animales , AMP Cíclico/farmacología , Canales Catiónicos Regulados por Nucleótidos Cíclicos/genética , Fenómenos Electrofisiológicos/fisiología , Canales Regulados por Nucleótidos Cíclicos Activados por Hiperpolarización , Activación del Canal Iónico/efectos de los fármacos , Canales Iónicos/genética , Cinética , Potenciales de la Membrana/fisiología , Ratones , Modelos Biológicos , Oocitos/metabolismo , ARN Complementario/genética , Proteínas Recombinantes de Fusión/fisiología , Xenopus laevis
16.
Elife ; 82019 11 26.
Artículo en Inglés | MEDLINE | ID: mdl-31769408

RESUMEN

Hyperpolarization-activated cyclic nucleotide-gated (HCN) channels control spontaneous electrical activity in heart and brain. Binding of cAMP to the cyclic nucleotide-binding domain (CNBD) facilitates channel opening by relieving a tonic inhibition exerted by the CNBD. Despite high resolution structures of the HCN1 channel in the cAMP bound and unbound states, the structural mechanism coupling ligand binding to channel gating is unknown. Here we show that the recently identified helical HCN-domain (HCND) mechanically couples the CNBD and channel voltage sensing domain (VSD), possibly acting as a sliding crank that converts the planar rotational movement of the CNBD into a rotational upward displacement of the VSD. This mode of operation and its impact on channel gating are confirmed by computational and experimental data showing that disruption of critical contacts between the three domains affects cAMP- and voltage-dependent gating in three HCN isoforms.


Asunto(s)
AMP Cíclico/química , AMP Cíclico/metabolismo , Canales Regulados por Nucleótidos Cíclicos Activados por Hiperpolarización/química , Canales Regulados por Nucleótidos Cíclicos Activados por Hiperpolarización/metabolismo , Dominios Proteicos , Sitios de Unión , Electrofisiología , Células HEK293/fisiología , Humanos , Interacciones Hidrofóbicas e Hidrofílicas , Canales Regulados por Nucleótidos Cíclicos Activados por Hiperpolarización/genética , Activación del Canal Iónico , Cinética , Simulación de Dinámica Molecular , Conformación Proteica , Isoformas de Proteínas , Termodinámica
17.
J Neurosci ; 27(46): 12440-51, 2007 Nov 14.
Artículo en Inglés | MEDLINE | ID: mdl-18003822

RESUMEN

Whereas recent studies have elucidated principles for representation of information within the entorhinal cortex, less is known about the molecular basis for information processing by entorhinal neurons. The HCN1 gene encodes ion channels that mediate hyperpolarization-activated currents (I(h)) that control synaptic integration and influence several forms of learning and memory. We asked whether hyperpolarization-activated, cation nonselective 1 (HCN1) channels control processing of information by stellate cells found within layer II of the entorhinal cortex. Axonal projections from these neurons form a major component of the synaptic input to the dentate gyrus of the hippocampus. To determine whether HCN1 channels control either the resting or the active properties of stellate neurons, we performed whole-cell recordings in horizontal brain slices prepared from adult wild-type and HCN1 knock-out mice. We found that HCN1 channels are required for rapid and full activation of hyperpolarization-activated currents in stellate neurons. HCN1 channels dominate the membrane conductance at rest, are not required for theta frequency (4-12 Hz) membrane potential fluctuations, but suppress low-frequency (<4 Hz) components of spontaneous and evoked membrane potential activity. During sustained activation of stellate cells sufficient for firing of repeated action potentials, HCN1 channels control the pattern of spike output by promoting recovery of the spike afterhyperpolarization. These data suggest that HCN1 channels expressed by stellate neurons in layer II of the entorhinal cortex are key molecular components in the processing of inputs to the hippocampal dentate gyrus, with distinct integrative roles during resting and active states.


Asunto(s)
Canales Catiónicos Regulados por Nucleótidos Cíclicos/metabolismo , Corteza Entorrinal/metabolismo , Vías Nerviosas/metabolismo , Neuronas/metabolismo , Canales de Potasio/metabolismo , Transmisión Sináptica/genética , Potenciales de Acción/efectos de los fármacos , Potenciales de Acción/genética , Animales , Canales Catiónicos Regulados por Nucleótidos Cíclicos/genética , Giro Dentado/metabolismo , Corteza Entorrinal/citología , Femenino , Canales Regulados por Nucleótidos Cíclicos Activados por Hiperpolarización , Activación del Canal Iónico/efectos de los fármacos , Activación del Canal Iónico/genética , Masculino , Potenciales de la Membrana/efectos de los fármacos , Potenciales de la Membrana/genética , Memoria/fisiología , Ratones , Ratones Noqueados , Inhibición Neural/efectos de los fármacos , Inhibición Neural/genética , Vías Nerviosas/citología , Neuronas/citología , Neuronas/efectos de los fármacos , Técnicas de Cultivo de Órganos , Técnicas de Placa-Clamp , Canales de Potasio/genética , Membranas Sinápticas/genética , Membranas Sinápticas/metabolismo , Transmisión Sináptica/efectos de los fármacos , Ritmo Teta/efectos de los fármacos
18.
Elife ; 72018 06 20.
Artículo en Inglés | MEDLINE | ID: mdl-29923826

RESUMEN

Binding of TRIP8b to the cyclic nucleotide binding domain (CNBD) of mammalian hyperpolarization-activated cyclic nucleotide-gated (HCN) channels prevents their regulation by cAMP. Since TRIP8b is expressed exclusively in the brain, we envisage that it can be used for orthogonal control of HCN channels beyond the central nervous system. To this end, we have identified by rational design a 40-aa long peptide (TRIP8bnano) that recapitulates affinity and gating effects of TRIP8b in HCN isoforms (hHCN1, mHCN2, rbHCN4) and in the cardiac current If in rabbit and mouse sinoatrial node cardiomyocytes. Guided by an NMR-derived structural model that identifies the key molecular interactions between TRIP8bnano and the HCN CNBD, we further designed a cell-penetrating peptide (TAT-TRIP8bnano) which successfully prevented ß-adrenergic activation of mouse If leaving the stimulation of the L-type calcium current (ICaL) unaffected. TRIP8bnano represents a novel approach to selectively control HCN activation, which yields the promise of a more targeted pharmacology compared to pore blockers.


Asunto(s)
AMP Cíclico/química , Canales Regulados por Nucleótidos Cíclicos Activados por Hiperpolarización/química , Miocitos Cardíacos/efectos de los fármacos , Péptidos/farmacología , Canales de Potasio/química , Animales , Sitios de Unión , Canales de Calcio Tipo L/química , Canales de Calcio Tipo L/genética , Canales de Calcio Tipo L/metabolismo , Péptidos de Penetración Celular/química , Péptidos de Penetración Celular/genética , Péptidos de Penetración Celular/metabolismo , AMP Cíclico/metabolismo , Expresión Génica , Células HEK293 , Humanos , Canales Regulados por Nucleótidos Cíclicos Activados por Hiperpolarización/genética , Canales Regulados por Nucleótidos Cíclicos Activados por Hiperpolarización/metabolismo , Proteínas de la Membrana/química , Proteínas de la Membrana/genética , Proteínas de la Membrana/metabolismo , Ratones , Ratones Endogámicos C57BL , Simulación del Acoplamiento Molecular , Miocitos Cardíacos/citología , Miocitos Cardíacos/metabolismo , Técnicas de Placa-Clamp , Péptidos/síntesis química , Peroxinas/química , Peroxinas/genética , Peroxinas/metabolismo , Canales de Potasio/genética , Canales de Potasio/metabolismo , Unión Proteica , Conformación Proteica en Hélice alfa , Conformación Proteica en Lámina beta , Dominios y Motivos de Interacción de Proteínas , Conejos , Nodo Sinoatrial/citología , Nodo Sinoatrial/efectos de los fármacos , Nodo Sinoatrial/metabolismo , Productos del Gen tat del Virus de la Inmunodeficiencia Humana
19.
Trends Neurosci ; 26(10): 550-4, 2003 Oct.
Artículo en Inglés | MEDLINE | ID: mdl-14522148

RESUMEN

Concepts regarding the function of the hyperpolarization-activated current (Ih) in shaping the excitability of single cells and neuronal ensembles have been evolving rapidly following the recent cloning of genes that encode the underlying 'h-channels' - the HCN genes. This article reviews new information about the transcriptional regulation of these channels, highlighting novel studies that demonstrate short- and long-term modulation of HCN expression, and linking this modulation to mechanisms of neurological diseases.


Asunto(s)
Canales Iónicos/genética , Canales Iónicos/metabolismo , Proteínas del Tejido Nervioso/genética , Proteínas del Tejido Nervioso/metabolismo , Neuronas/fisiología , Animales , Canales Catiónicos Regulados por Nucleótidos Cíclicos , Regulación de la Expresión Génica , Humanos , Canales Regulados por Nucleótidos Cíclicos Activados por Hiperpolarización , Canales Iónicos/química , Canales Iónicos/fisiología , Potenciales de la Membrana , Enfermedades del Sistema Nervioso/metabolismo , Neuronas/metabolismo , Canales de Potasio , Transcripción Genética
20.
J Neurosci ; 24(47): 10750-62, 2004 Nov 24.
Artículo en Inglés | MEDLINE | ID: mdl-15564593

RESUMEN

Hyperpolarization-activated cation currents (I(h)) are carried by channels encoded by a family of four genes (HCN1-4) that are differentially expressed within the brain in specific cellular and subcellular compartments. HCN1 shows a high level of expression in apical dendrites of cortical pyramidal neurons and in presynaptic terminals of cerebellar basket cells, structures with a high density of I(h). Expression of I(h) is also regulated by neuronal activity. To isolate proteins that may control HCN channel expression or function, we performed yeast two-hybrid screens using the C-terminal cytoplasmic tails of the HCN proteins as bait. We identified a brain-specific protein, which has been previously termed TRIP8b (for TPR-containing Rab8b interacting protein) and PEX5Rp (for Pex5p-related protein), that specifically interacts with all four HCN channels through a conserved sequence in their C-terminal tails. In situ hybridization and immunohistochemistry show that TRIP8b and HCN1 are colocalized, particularly within dendritic arbors of hippocampal CA1 and neocortical layer V pyramidal neurons. The dendritic expression of TRIP8b in layer V pyramidal neurons is disrupted after deletion of HCN1 through homologous recombination, demonstrating a key in vivo interaction between HCN1 and TRIP8b. TRIP8b dramatically alters the trafficking of HCN channels heterologously expressed in Xenopus oocytes and human embryonic kidney 293 cells, causing a specific decrease in surface expression of HCN protein and I(h) density, with a pronounced intracellular accumulation of HCN protein that is colocalized in discrete cytoplasmic clusters with TRIP8b. Finally, TRIP8b expression in cultured pyramidal neurons markedly decreases native I(h) density. These data suggest a possible role for TRIP8b in regulating HCN channel density in the plasma membrane.


Asunto(s)
Canales Iónicos/biosíntesis , Proteínas de la Membrana/fisiología , Proteínas del Tejido Nervioso/fisiología , Potenciales de Acción/fisiología , Secuencias de Aminoácidos , Secuencia de Aminoácidos , Animales , Encéfalo/metabolismo , Células Cultivadas , Secuencia Conservada , Cricetinae , Regulación de la Expresión Génica/fisiología , Humanos , Canales Iónicos/química , Proteínas de la Membrana/biosíntesis , Proteínas de la Membrana/metabolismo , Ratones , Ratones Noqueados , Datos de Secuencia Molecular , Proteínas del Tejido Nervioso/biosíntesis , Proteínas del Tejido Nervioso/metabolismo , Peroxinas , Unión Proteica/fisiología , Isoformas de Proteínas , Transporte de Proteínas/fisiología , Células Piramidales/metabolismo , Células Piramidales/fisiología , Ratas , Ratas Sprague-Dawley , Proteínas Recombinantes de Fusión/biosíntesis , Virus Sindbis , Xenopus laevis
SELECCIÓN DE REFERENCIAS
DETALLE DE LA BÚSQUEDA