Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 5 de 5
Filtrar
Más filtros

Bases de datos
Tipo del documento
Revista
Intervalo de año de publicación
1.
Nature ; 614(7947): 239-243, 2023 02.
Artículo en Inglés | MEDLINE | ID: mdl-36755175

RESUMEN

Planetary rings are observed not only around giant planets1, but also around small bodies such as the Centaur Chariklo2 and the dwarf planet Haumea3. Up to now, all known dense rings were located close enough to their parent bodies, being inside the Roche limit, where tidal forces prevent material with reasonable densities from aggregating into a satellite. Here we report observations of an inhomogeneous ring around the trans-Neptunian body (50000) Quaoar. This trans-Neptunian object has an estimated radius4 of 555 km and possesses a roughly 80-km satellite5 (Weywot) that orbits at 24 Quaoar radii6,7. The detected ring orbits at 7.4 radii from the central body, which is well outside Quaoar's classical Roche limit, thus indicating that this limit does not always determine where ring material can survive. Our local collisional simulations show that elastic collisions, based on laboratory experiments8, can maintain a ring far away from the body. Moreover, Quaoar's ring orbits close to the 1/3 spin-orbit resonance9 with Quaoar, a property shared by Chariklo's2,10,11 and Haumea's3 rings, suggesting that this resonance plays a key role in ring confinement for small bodies.

3.
Nature ; 550(7675): 219-223, 2017 10 11.
Artículo en Inglés | MEDLINE | ID: mdl-29022593

RESUMEN

Haumea-one of the four known trans-Neptunian dwarf planets-is a very elongated and rapidly rotating body. In contrast to other dwarf planets, its size, shape, albedo and density are not well constrained. The Centaur Chariklo was the first body other than a giant planet known to have a ring system, and the Centaur Chiron was later found to possess something similar to Chariklo's rings. Here we report observations from multiple Earth-based observatories of Haumea passing in front of a distant star (a multi-chord stellar occultation). Secondary events observed around the main body of Haumea are consistent with the presence of a ring with an opacity of 0.5, width of 70 kilometres and radius of about 2,287 kilometres. The ring is coplanar with both Haumea's equator and the orbit of its satellite Hi'iaka. The radius of the ring places it close to the 3:1 mean-motion resonance with Haumea's spin period-that is, Haumea rotates three times on its axis in the time that a ring particle completes one revolution. The occultation by the main body provides an instantaneous elliptical projected shape with axes of about 1,704 kilometres and 1,138 kilometres. Combined with rotational light curves, the occultation constrains the three-dimensional orientation of Haumea and its triaxial shape, which is inconsistent with a homogeneous body in hydrostatic equilibrium. Haumea's largest axis is at least 2,322 kilometres, larger than previously thought, implying an upper limit for its density of 1,885 kilograms per cubic metre and a geometric albedo of 0.51, both smaller than previous estimates. In addition, this estimate of the density of Haumea is closer to that of Pluto than are previous estimates, in line with expectations. No global nitrogen- or methane-dominated atmosphere was detected.

4.
Nature ; 491(7425): 566-9, 2012 Nov 22.
Artículo en Inglés | MEDLINE | ID: mdl-23172214

RESUMEN

Pluto and Eris are icy dwarf planets with nearly identical sizes, comparable densities and similar surface compositions as revealed by spectroscopic studies. Pluto possesses an atmosphere whereas Eris does not; the difference probably arises from their differing distances from the Sun, and explains their different albedos. Makemake is another icy dwarf planet with a spectrum similar to Eris and Pluto, and is currently at a distance to the Sun intermediate between the two. Although Makemake's size (1,420 ± 60 km) and albedo are roughly known, there has been no constraint on its density and there were expectations that it could have a Pluto-like atmosphere. Here we report the results from a stellar occultation by Makemake on 2011 April 23. Our preferred solution that fits the occultation chords corresponds to a body with projected axes of 1,430 ± 9 km (1σ) and 1,502 ± 45 km, implying a V-band geometric albedo p(V) = 0.77 ± 0.03. This albedo is larger than that of Pluto, but smaller than that of Eris. The disappearances and reappearances of the star were abrupt, showing that Makemake has no global Pluto-like atmosphere at an upper limit of 4-12 nanobar (1σ) for the surface pressure, although a localized atmosphere is possible. A density of 1.7 ± 0.3 g cm(-3) is inferred from the data.

5.
Nature ; 478(7370): 493-6, 2011 Oct 26.
Artículo en Inglés | MEDLINE | ID: mdl-22031441

RESUMEN

The dwarf planet Eris is a trans-Neptunian object with an orbital eccentricity of 0.44, an inclination of 44 degrees and a surface composition very similar to that of Pluto. It resides at present at 95.7 astronomical units (1 AU is the Earth-Sun distance) from Earth, near its aphelion and more than three times farther than Pluto. Owing to this great distance, measuring its size or detecting a putative atmosphere is difficult. Here we report the observation of a multi-chord stellar occultation by Eris on 6 November 2010 UT. The event is consistent with a spherical shape for Eris, with radius 1,163 ± 6 kilometres, density 2.52 ± 0.05 grams per cm(3) and a high visible geometric albedo, Pv = 0.96(+0.09)(-0.04). No nitrogen, argon or methane atmospheres are detected with surface pressure larger than ∼1 nanobar, about 10,000 times more tenuous than Pluto's present atmosphere. As Pluto's radius is estimated to be between 1,150 and 1,200 kilometres, Eris appears as a Pluto twin, with a bright surface possibly caused by a collapsed atmosphere, owing to its cold environment. We anticipate that this atmosphere may periodically sublimate as Eris approaches its perihelion, at 37.8 astronomical units from the Sun.

SELECCIÓN DE REFERENCIAS
DETALLE DE LA BÚSQUEDA